Concise Encoding of Signed Merkle Tree Proofs

draft-steele-cose-merkle-tree-proofs

Orie Steele
IETF 116, Yokohama
March 27, 2023
What Does It Do?

- Describes merkle proof data structures in CBOR
- Addresses the challenge of “merkle tree agility”
- Enables COSE Sign1 to act as a kind of counter signature over an inclusion proof for a payload
- Provides COSE building blocks for transparency logs, and other verifiable data structures that build on merkle proofs.
Why Do It?

- Establishes interoperability across various verifiable data systems:
 - CBOR inclusion proofs are compact
 - COSE signatures over inclusion proofs enable offline verification
 - A useful building block for SCITT and other COSE oriented WGs
 - The more people can verify inclusion proofs, the more robust transparency
 - There are other transparency use cases, such as “key transparency” & “certificate transparency”.
Status

- Recently published -00:
 - Need to address “merkle tree agility”
 - Terminology needs tightening
 - Need to address “various proof encodings”
 - Need to improve CDDL examples
We hope to establish a registry for tree algorithms.
Next Steps

- How should we handle tree agility:
 - Registry / vanilla algorithms / vendor algorithms

- We think the tree agility issue should be solved before a call for adoption.