Using Deterministic Networks for Industry Operations and Control

draft-km-detnet-for-ocn-00

Authors

Kiran M, Cedric Westphal, Richard Li (Futurewei), Tooba Faisal (King's College London)

IETF 116 DetNet WG Meeting

Problem Space

- Machine-to-machine type communication involves plethora of systems and industry verticals use process automation
 - E.g., factory automation, energy grids, remote driving...
 - or anything involving operational technology (OT)
- Generalization of remote process automation
 - Support deterministic network interface from end-system's perspective.
- An appropriate description of end-system side of DetNet is missing
- Provide application to DetNet interface
 - According to DetNet-Arch[RFC8655] Section 4.1 Figure 5.
 - This is identified as an interface between end system and relay-node
 - An under-specified aspect of DetNet but equally important

Cloud-Native DetNet App Scenarios

 From L2 to L3: DetNet helps with scalability by providing deterministic services over IP

- **Towards cloud-native DetNet Applications:** helps with simplification of process plant infrastructure.
- Advances applicability to broader set of use cases.

Generalization of interfaces between the connected End systems

• Controllers

- Associate with one of more field devices
- All operations are controlled from these end systems
- Sensor
 - Emit operational data periodically or event-based
 - Emit critical alarms.
- Actuating end-systems
 - Bring mechanical or physical changes to environment
 - Receive commands from controllers
- Common attributes
 - In general interface to actuators and sensors across different vendors and protocols is quite similar
 - Similar command- structure parameter changes
 - Represented as {controller, field-device} pair as communication endpoints.

Potential Traffic Patterns and Constraints

- Control Loops
 - To measure (sensor), compare (controller) and adjust (actuate) process variables
 - Each step is a separate instruction or packet as against a continuous flow.
- Periodicity
 - Many devices emit different type of readings with different interval
- Ordering
 - Must be preserved, out of order packets will be catastrophic to control loops
- Urgency
 - Failures and alarms must have highest precedence in the network.
 - A deterministic network could support these patterns.
 - Connect end systems to the network:
 - How end system can clearly communicate these without getting into the details of DetNet

Explicit Parameters to DetNet Sublayer Mappings

Figure 3: A Simple DetNet-Enabled IP Network, Ref. RFC8939

detnet-for-ocn

Considerations

- Operator vs Application view
 - Hide internals of various DetNet data plane from end-applications
 - End-systems are IP based, maybe design for IPv6 (no elegant way to extend on IPv4)
- Practical mapping of flow specific traffic treatment
 - In DetNet-IP [RFC 8939] section 5.3, flow id determines traffic treatment provisioned in the DetNet.
 - This could lead to scalability challenges [on going DP enhancements]
 - Limitations with service sub-layers
- Split Traffic flows
 - Architectural consideration. Most process automation is on-site,
 - With only support for remote monitoring
- Variety of traffic patterns within and for different {controller-field-device} pairs
 - Different latency bounds, urgent/alarm messages, closed control loops (bi-directional latency bounds) these are per packet constraints
 - Generally long-lived DetNet flow reservations only provides coarse-granularity.

OCN Option (OCNO) as an EH option

- Motivated by HBH enhancements [draft-ietf-6man-hbh-processing-06] Nodes should not drop HBH packets if they don't process them.
- Forward looking cloud-based systems will support IPv6

+:	=====+	-======================================
	Flag	Description
+:	+====== U	send message immediately. its an alarm
	P	periodic packet (intervals in ~ms)
	' F	part of flowlet. see Nonce and seq
	' L +	bounded latency spec provided
	' R	Reliability with no packet loss tolerance
 +-	V +	Delay variation with no packet loss tolerance

0	1	2 3			
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6 7 8 9 0 1			
	+-+-+-+	+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+		
	Option	I Type Opt Data Len			
+-					
OCNF flags OCN-TC-Flowlet nonce sequence					
+-					
(bounded latency spec)					
+-					
(Del	lay variation spec)		T		
+-	+-+-+-+-+-+-+-+-+-+-+	-+	+		

- Provides a reasonable way to interact with the DetNet Relay nodes
- Programmatic interface is application friendly (M2M Comm.)

Take aways and Discussion

My comments

- 1. Applications should not have to understand the intricacies of a DetNet service
- 2. IPv6 based solutions more suitable for end-hosts
- 3. interface provides lot more flexibility (consider different DETNET-DPs)
- 4. How to describe finer-details in a DetNet flow? E.g. {controller-fielddev} pair.

Request to the group

- 5. Feedback on the problem space
- 6. Does this align with DetNet WG scope
- 7. Comments on the solution approach? Any other options we can explore?

Thank you!