
BLOCKCHAIN COMMONS

GORDIAN ENVELOPE & dCBOR
IETF DISPATCH 27 MARCH 2023

BLOCKCHAIN
COMMONS

GORDIAN ENVELOPE

WHAT IS BLOCKCHAIN COMMONS?
▸We are a community that brings together stakeholders to

collaboratively build open & interoperable, secure &
compassionate infrastructure.

▸We design decentralized solutions where everyone wins.

▸We are a neutral “not-for-profit” that enables people to
control their own digital destiny.

GORDIAN
ENVELOPE

INTERNET DRAFT
datatracker.ietf.org/
doc/draft-mcnally-
envelope

INTERNET DRAFT
blockchaincommons.github.io/WIPs-
IETF-draft-envelope/draft-
mcnally-envelope.html

ENVELOPES HOLD MANY KINDS OF THINGS

ENVELOPES CAN DO MANY THINGS

INFORMATION

SUBJECT

struct Envelope {
 let subject: Envelope
 let assertions: [Assertion]
}

struct Assertion {
 let predicate: Envelope
 let object: Envelope
}

struct Envelope {
 let subject: Envelope
 let assertions: [Assertion]
}

struct Assertion {
 let predicate: Envelope
 let object: Envelope
}

"Alice" [
 "knows": "Bob"
]

struct Envelope {
 let subject: Envelope
 let assertions: [Assertion]
}

struct Assertion {
 let predicate: Envelope
 let object: Envelope
}

"Alice" [
 "knows": "Bob"
]

enum Envelope {
 case node(subject: Envelope, assertions: [Envelope])
 case leaf(CBOR)
 case wrapped(Envelope)
 case knownValue(KnownValue)
 case assertion(Assertion)
 case encrypted(EncryptedMessage)
 case compressed(Compressed, Digest)
 case elided(Digest)
}

struct Envelope {
 let subject: Envelope
 let assertions: [Assertion]
}

struct Assertion {
 let predicate: Envelope
 let object: Envelope
}

"Alice" [
 "knows": "Bob"
]

"Alice"

"knows": "Bob"

ELIDED

ENCRYPTED

COMPRESSED

enum Envelope {
 case node(subject: Envelope, assertions: [Envelope])
 case leaf(CBOR)
 case wrapped(Envelope)
 case knownValue(KnownValue)
 case assertion(Assertion)
 case encrypted(EncryptedMessage)
 case compressed(Compressed, Digest)
 case elided(Digest)
}

"Alice" [
 "knows": "Bob"
]

"Alice" [
 "knows": "Bob"
]

"Alice" [
 "knows": "Bob"
]

"Alice" [
 "knows": "Bob"
]

5 POSITIONS

"Alice" [
 "knows": "Bob"
]

1 - SUBJECT

"Alice" [
 "knows": "Bob"
 "O1": "P1"
]

ELIDED [
 "knows": "Bob"
]

"Alice" [
 "knows": "Bob"
]

2 - PREDICATE

"Alice" [
 "knows" [
 "O2": "P2"
] : "Bob"
]

"Alice" [
 ELIDED: "Bob"
]

"Alice" [
 "knows": "Bob"
]

3 - OBJECT

"Alice" [
 "knows": "Bob" [
 "O3": "P3"
]
]

"Alice" [
 "knows": ELIDED
]

"Alice" [
 "knows": "Bob"
]

4 - ASSERTION

"Alice" [
 {
 "knows": "Bob"
 } [
 "O4": "P4"
]
]

"Alice" [
 ELIDED
]

"Alice" [
 "knows": "Bob"
]

5 - ENVELOPE

ELIDED {
 "Alice" [
 "knows": "Bob"
]
} [
 "O5": "P5"
]

STRUCTURE READY

RDF*

[Envelope("Alice"), Envelope("Bob"), Envelope("Carol")]

A user can elide their content:

https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/
Educational.md#2-danika-restricts-her-revelations-elision

A user can elide and then later reveal their content:

https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/
Software.md#7-amira-reveals-her-identity-progressive-trust

User-based herd privacy:

https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/
Educational.md#6-paul-proves-proficiency-with-improved-privacy-herd-privacy-with-
non-correlation

USE CASES

https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Educational.md#2-danika-restricts-her-revelations-elision
https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Educational.md#2-danika-restricts-her-revelations-elision
https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Software.md#7-amira-reveals-her-identity-progressive-trust
https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Software.md#7-amira-reveals-her-identity-progressive-trust
https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Educational.md#6-paul-proves-proficiency-with-improved-privacy-herd-privacy-with-non-correlation
https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Educational.md#6-paul-proves-proficiency-with-improved-privacy-herd-privacy-with-non-correlation
https://github.com/BlockchainCommons/Gordian/blob/master/Envelope/Use-Cases/Educational.md#6-paul-proves-proficiency-with-improved-privacy-herd-privacy-with-non-correlation

dCBOR

PHP
Fast Infoset JSON Thrift

XML-RPC Protobuf XMLPickle

Property list

CBOR O
PC-UA Binary UB

JS
O
N

Netstrings OGDL

BSONSDX
BencodeCDR

Java serialization

CS
V FlatBuffers

Smile
Ion

FHIR EXI

Parq
uet Binn
S-expressions

YAML
XDRCap'n_Proto

Avro SOAPMessagePack

OpenDDLD-Bus

‣ BINARY
‣ CONCISE
‣ SELF-DESCRIBING
‣ CONSTRAINED

ENVIRONMENTS
‣ PLATFORM/LANGUAGE

AGNOSTIC
‣ STANDARDIZED
‣ DETERMINISTIC

INTERNET DRAFT
datatracker.ietf.org/
doc/draft-mcnally-
deterministic-cbor/

INTERNET DRAFT
blockchaincommons.github.io/WIPs-
IETF-draft-deterministic-cbor/
draft-mcnally-deterministic-
cbor.html

‣ BINARY
‣ CONCISE
‣ SELF-DESCRIBING
‣ CONSTRAINED

ENVIRONMENTS
‣ PLATFORM/LANGUAGE

AGNOSTIC
‣ STANDARDIZED
‣ DETERMINISTIC

https://datatracker.ietf.org/doc/draft-mcnally-envelope/

‣ BINARY
‣ CONCISE
‣ SELF-DESCRIBING
‣ CONSTRAINED

ENVIRONMENTS
‣ PLATFORM/LANGUAGE

AGNOSTIC
‣ STANDARDIZED
‣ DETERMINISTIC

https://datatracker.ietf.org/doc/draft-mcnally-envelope/

DETERMINISTIC CBOR

THE POINT OF DETERMINISM
▸ Eliminate choices for how to serialize particular data.

▸ Where possible, the API enforces these standards.

▸ Where not possible, developers MUST specify how to
serialize and how to validate on deserializing.

▸ Multiple agents serializing the same data should
automatically achieve consensus on the exact form of that
data.

DETERMINISTIC CBOR

WHAT DOES THE SPEC SAY?
RFC-8949
4.2. Deterministically Encoded CBOR

Some protocols may want encoders to only emit CBOR in a particular
deterministic format; those protocols might also have the decoders check that
their input is in that deterministic format. Those protocols are free to define what
they mean by a "deterministic format" and what encoders and decoders are
expected to do. This section defines a set of restrictions that can serve as the base
of such a deterministic format.

DETERMINISTIC CBOR

WHAT DOES THE SPEC SAY?
RFC-8949
4.2.1. Core Deterministic Encoding Requirements

▸ Variable-length integers MUST be as short as possible.

▸ Floating-point values MUST use the shortest form that preserves the value.

▸ Indefinite-length arrays and maps MUST NOT be used.

▸ Map keys MUST be sorted in bytewise lexicographic order of their
deterministic encodings.

DETERMINISTIC CBOR

WHAT DOES THE SPEC SAY?
RFC-8949
4.2.2. Additional Deterministic Encoding Considerations

▸ Protocols MUST specify the circumstances under which a data item MUST or
MUST NOT be tagged.

▸ Protocols allowing the use of BigNums ≥ 264 (tags 2 and 3) MUST specify
whether values <264 MUST use regular integer encodings.

▸ Protocols allowing the use of floating-point numbers must decide how to
encode values like –0.0, NaN/Signalling NaN, subnormal values, etc.

DETERMINISTIC CBOR

WHAT DOES BLOCKCHAIN COMMONS SAY?

▸ Deterministic encoding is essential for cryptographic
“smart documents” like Gordian Envelope.

▸ All of our existing CBOR specs are already
deterministic encoding-compliant.

▸ Being opinionated is good.

▸ Enforcing opinionated best practices at the
software/API level is even better.

DETERMINISTIC CBOR

HOW MANY EXISTING CBOR IMPLEMENTATIONS DIRECTLY SUPPORT
DETERMINISTIC ENCODING AS A CORE VALUE?

404
(none found)

DETERMINISTIC CBOR

SO NOW WE’VE BUILT TWO OF THEM…
dCBOR Swift

https://github.com/BlockchainCommons/BCSwiftDCBOR
dCBOR Rust

https://crates.io/crates/dcbor

DETERMINISTIC CBOR

GOALS FOR dCBOR

▸ Make it easy to write and read deterministic CBOR (dCBOR) that complies with
RFC-8949 §4.2.1. Core Deterministic Encoding Requirements.

▸ Be strict about what is written and read.

▸ Make it hard to write non-compliant dCBOR.

▸ Make it an error to read non-compliant dCBOR.

▸ Facilitate as much as possible the considerations in RFC-8949
§4.2.2. Additional Deterministic Encoding Considerations.

DETERMINISTIC CBOR

Encoding of Maps

▸ RFC-8949: Map keys MUST be sorted in bytewise lexicographic order of
their deterministic encodings.

▸ dCBOR libraries provide a special-purpose `Map` structure that keeps key-
value pairs in canonical sorted order as they are inserted or removed.

▸ Provides iteration through key-value pairs in canonical order.

▸ In some other ways they behave like a normal dictionary/map, but they are
primarily intended for use during the serialization/deserialization process.

▸ Deserialization of out-of-order map keys is an error.

DETERMINISTIC CBOR

Encoding of Numeric Values
▸ All encoded numeric values use the shortest possible serialization.

▸ Integers are 8, 16, 32, or 64 bits, floating point values 16, 32, or 64 bits.

▸ Floating point values with no fractional part are serialized as integers if possible.

▸ This means that 0.0, -0.0, and 0 are all serialized exactly the same way.

▸ Same semantics as JSON, JavaScript and Ruby.

▸ After deserialization, any numeric value can be extracted as a floating point value.

▸ Attempting to extract an integer from a numeric value with a fractional part is an
error.

▸ Attempting to deserialize a dCBOR stream with any numeric values not in their
canonical shortest form is an error.

▸ NaN is canonicalized to a single representation.

🚨

DETERMINISTIC CBOR

Provide protocols (Swift) and traits (Rust) to make structures CBOR-friendly.
▸ `CBORCodable` conformance adds serialization/deserialization to any type.

▸ Many fundamental built-in types conform including integers, floating
point values, strings, byte strings, arrays, booleans, and dates.

▸ `CBORTaggedCodable` adds a tag that is always written on serialization
and expected on deserialization.

▸ No attempt has been made to make dCBOR compatible with either the
`Codable` protocol (Swift) or the `SerDe` serialization framework (Rust).

▸ A lot of work for little benefit, with many sharp edge/corner cases to
deal with.

▸ If this is something you desire, we welcome PRs!

DETERMINISTIC CBOR

Output of CBOR diagnostic notation and annotated hex dumps

▸ The deserialized `CBOR` type has `diagnostic()` and `hex()` methods.

▸ Can be provided with `knownTags` argument that provides names for tags.

304(; crypto-keypath
 {
 1:
 [23, false, 23, true, 33, false]
 }
)

d9 0130 # tag(304) ; crypto-keypath
 a1 # map(1)
 01 # unsigned(1)
 86 # array(6)
 17 # unsigned(23)
 f4 # false
 17 # unsigned(23)
 f5 # true
 1821 # unsigned(33)
 f4 # false

DETERMINISTIC CBOR

Validations performed while decoding or extracting

CHRISTOPHER ALLEN
christophera@lifewithalacrity.com
@BlockchainComns

WOLF MCNALLY
wolf@wolfmcnally.com
@WolfMcNally

List of Envelope resource links:

https://www.blockchaincommons.com/introduction/
Envelope-Intro/#envelope-links

https://www.blockchaincommons.com/introduction/Envelope-Intro/#envelope-links
https://www.blockchaincommons.com/introduction/Envelope-Intro/#envelope-links

