DNSSEC Extension by Using PKIX Certificates

IETF 116, Yokohama

Hyeonmin Lee, Taekyoung (Ted) Kwon

Seoul National University
Disclaimer

• Many slides are adapted from our group’s previous presentation
 • February 17th, 2023, OARC 40

• We support DNSSEC in its current standards
 • We’d like to offer another option to DNS operators
DNSSEC Deployment [1/2]

• DNS Security Extensions (DNSSEC) were introduced for integrity of DNS messages
• After two decades of DNSSEC introduction...

Top-level domains (TLDs)? 91% deployed DNSSEC[1]
Second-level domains (SLDs)?

- In Dec 2017[2] .com (0.75%) .net, .org (~1%)
- In Dec 2022[1] .com (3.6%) .net (4.2%) .org (4.8%)

DNSSEC deployment rate is still low..
The vast majority of DNS messages in the real world are still vulnerable..

DNSSEC Deployment [2/2]

• Deploying/managing DNSSEC is burdensome and complex..
 • To deploy DNSSEC, a domain has to publish three DNS records (DNSKEY, RRSIG, and DS) to establish a DNSSEC chain
 • **DS records have to be uploaded to the domain’s parent zone**

• Errors in the DNSSEC deployment/management

[1] A Longitudinal, End-to-End View of the DNSSEC Ecosystem (USENIX Security’17)

30%

Missing DS records in the parent zone
Goal

• Can we guarantee the integrity of DNS messages without any dependency on other zones (e.g., uploading DS records to the parent zone)?

• We may need a more easily deployable way

It should **minimize changes or cooperations of** entities in the DNS infrastructure such as parent zones or registrars
Leveraging PKIX Certificates issued by CAs

• Most domains already use public keys (in X.509 certificates) – for HTTPS/TLS
 • 94% of web traffic to Google is HTTPS [3]
 • Usually, certificates are issued by public CAs – the issuance process is well established and often automated (e.g., IETF ACME)

We can leverage PKIX certificates that have been successfully used by HTTPS/TLS

Leveraging PKIX Certificates issued by CAs

DNSSEC

DNS

. (root) zone

. (root) KSK

. (root) ZSK

sign

upload

.com zone

.com KSK

.com ZSK

sign

upload

example.com zone

example.com KSK

example.com ZSK

sign

upload

.com DS

example.com DS

example.com RR

Proposal

DNS

. (root) zone

. (root) RR

sign

issue

.com zone

.com RR

sign

issue

example.com zone

example.com RR

sign

issue

Trust anchor (i.e., CA)
DNSSEC extension for PKIX certificates

We propose to reuse the DNSKEY, RRSIG and CERT records

1. A domain is issued a PKIX certificate (or its TLS one is reused)
2. The domain generates a signature of an RRset using its private key
3. The domain uploads the signature as an RRSIG record
4. Also, the domain uploads the public key as a DNSKEY record and a certificate chain as CERT records

i) A client fetches a DNS record (e.g., A record) and a signature (RRSIG)
ii) The client fetches the public key (DNSKEY) and the certificate chain (CERT), and validates them through the certificate verification process
iii) The client verifies the signature (RRSIG) using the public key
Minimize changes of the entities in DNS infra.

• Our design should **minimally require changes (or cooperations) of other entities in the DNS infrastructure**

 • We leverage CA-issued PKIX certificates (and public/private keys) which are widely used by domains

 • The public key can be verified through the certificate chain verification, which does not require cooperation from other DNS entities
 • cf) DNSSEC requires cooperation from parent zone or registrars to establish a chain of trust due to the DNS hierarchy (e.g., uploading DS records to the parent zone)

• Only authoritative name servers and local resolvers need to be changed
 • Deploying CERT records (name servers) and verifying a certificate chain (local resolvers)
Reuse DNS record types

- We suggest exploiting existing record types: DNSKEY, RRSIG, and CERT record

 1. **DNSKEY** stores a public key corresponding to the private key which is used to generate signatures of DNS records

 - **Flags field**
 - Two bits are used in current DNSSEC
 - *bit 7 – set to 1?* Holds a key for DNS zone
 - *bit 15 – set to 1?* KSK | set to 0? ZSK
 - Other bits (0-6, 8-14) are reserved for future use

 - **We can exploit one of these bits to specify our usage**

 ![Flags Diagram](image)

 2. **RRSIG** records stores the signatures of RRsets
 3. **CERT** records store a certificate chain

Conclusion

• We proposed an easier way that guarantees the integrity of DNS messages

 • Most DNS messages in the real-world are not protected

 • Our mechanism minimally requires changes (or cooperations) of other entities in the DNS infrastructure
 • By leveraging PKIX certificates that are already widely used by domains

• Our mechanism reuses existing DNS record types
Thank you!

Taekyoung (Ted) Kwon

tkkwon@snu.ac.kr, tkkwon98@gmail.com