
Austin Wright, March 2023 [v1]

Byte Range PATCH
A media type for writing at offsets

Motivation

• Problem: I only want to change the first four bytes of a file over HTTP

• Current solutions:

• Endpoint-specific POST URI 
<http://example.com/logs.update>

• Endpoint-specific URI format to identify only the selected bytes, e.g. 
<http://example.com/logs?bytes=200-299>

• RFC 9110 Content-Range PUT request

• None of these can be worked into generic HTTP toolchains

Workaround
Endpoint-specific POST request

POST /log HTTP/1.1
Content-Type: application/x-www-urlencoded

range=4-7&bytes=EFGH

Workaround
Endpoint-specific URI format

GET /log?bytes=4-7 HTTP/1.1
Content-Type: application/octet-stream

EFGH

PUT /log?bytes=4-7 HTTP/1.1
Content-Type: application/octet-stream

WXYZ

RFC 9110 Content-Range PUT

GET / HTTP/1.1
Range: bytes=4275-4302

HTTP/1.1 206 Partial Content
Content-Range: 4275-4302/7550

was ALICE’S SPOON! And nobod

PUT / HTTP/1.1
Content-Range: 4275-4302/7550

was CAROL’S SPOON! And nobod

HTTP/1.1 200 OK

GET / HTTP/1.1
Range: bytes=4275-4302

HTTP/1.1 206 Partial Content
Content-Range: 4275-4302/7550

was CAROL’S SPOON! And nobod

①

②

③

Content-Range PUT Shortcomings
RFC 9110 is insufficient for many applications

• Requires prior agreement, otherwise it will overwrite the entire resource

• There’s no benefit over using POST endpoint

• No way to safely opt back out: Once implemented in clients, removing
support will cause breakage.

• Content-Range does not permit indeterminate length responses

• e.g. live streams that may continue indefinitely

• A media type is useful for describing changes outside the context of an HTTP
request

Barriers
Why this hasn’t been standardized yet?

• HTTP resources aren't exactly files on a filesystem

• … But they still both represent a string of bytes

• PATCH is relatively new

• And actually, RFC 9110 standardized a partial solution

Use Cases

• Segmented/chunked uploads

• Resuming broken uploads

• Writes to block devices

• Optimizes many file formats, e.g. embedded databases, append-only files,
media files with indexes at the start of the file.

Use Cases: Segmented/chunked uploads

• PUT /file/data.json.000 HTTP/1.1 
PUT /file/0001.json.001 HTTP/1.1 
PUT /file/0002.json.002 HTTP/1.1

• Problem: Each resource will be malformed, client must perform endpoint-
specific steps to recreate the correct resource

Use Cases: Resuming broken uploads

Use Cases: Appending to a log file
POST / HTTP/1.1
Host: logs.monitoring.us-west-1.amazonaws.com
X-Amz-Date: 20130315T092054Z
Authorization: AWS4-HMAC-SHA256 …
User-Agent: FooBar/2.0
Accept: application/json
Content-Type: application/x-amz-json-1.1
Content-Length: 332
X-Amz-Target: Logs_20140328.PutLogEvents

{
 "logGroupName": "my-log-group",
 "logStreamName": "my-log-stream",
 "logEvents": [
 { "timestamp": 1396035378988, "message": "Example event 1" },
 { "timestamp": 1396035378988, "message": "Example event 2" }
]
}

Use Cases: Optimized file formats
Appending to a WAV file

00000000 52 49 46 46 e0 64 81 02 57 41 56 45 66 6d 74 20 |RIFF.d..WAVEfmt |
00000010 10 00 00 00 01 00 02 00 44 ac 00 00 10 b1 02 00 |........D.......|
00000020 04 00 10 00 4c 49 53 54 b4 00 00 00 49 4e 46 4f |....LIST....INFO|
00000030 49 41 52 54 18 00 00 00 54 68 65 20 4c 61 7a 69 |IART....The Lazi|
00000040 65 73 74 20 4d 65 6e 20 6f 6e 20 4d 61 72 73 00 |est Men on Mars.|
00000050 49 43 4d 54 2f 00 00 00 68 74 74 70 3a 2f 2f 77 |ICMT/...http://w|
00000060 77 77 2e 61 6c 62 69 6e 6f 62 6c 61 63 6b 73 68 |ww.albinoblacksh|
00000070 65 65 70 2e 63 6f 6d 2f 66 6c 61 73 68 2f 62 61 |eep.com/flash/ba|
00000080 73 65 2e 70 68 70 00 00 49 43 52 44 05 00 00 00 |se.php..ICRD....|
00000090 32 30 30 30 00 00 49 47 4e 52 05 00 00 00 47 61 |2000..IGNR....Ga|
000000a0 6d 65 00 00 49 4e 41 4d 1e 00 00 00 49 6e 76 61 |me..INAM....Inva|
000000b0 73 69 6f 6e 20 6f 66 20 74 68 65 20 47 61 62 62 |sion of the Gabb|
000000c0 65 72 20 52 6f 62 6f 74 73 00 49 53 46 54 0e 00 |er Robots.ISFT..|
000000d0 00 00 4c 61 76 66 35 39 2e 32 37 2e 31 30 30 00 |..Lavf59.27.100.|
000000e0 64 61 74 61 00 64 81 02 00 00 00 00 00 00 00 00 |data.d..........|
000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

32-bit little-endian file length ≈ 40M

Byte range patch
Functional requirements

• Opportunistic — the server will return 412 Unknown Media Type if
unsupported

• More useful than 400 Client Error for rejecting Content-Range PUT

• Maps directly to filesystem operations, including append and overwrite that
many file formats are optimized for.

• Support for determinate length and indeterminate length resources

• Writing log files (determinate length), or live streaming an audio feed
(indeterminate length)

HTTP extension mechanisms

• Use HTTP existing extension mechanisms

• Header/Field — used for opportunistically signaling something to the
server, but ignoring is OK.

• Method or media type — used if some part of the request must be
understood.

• The PATCH method satisfies all the necessary semantics (create or
update the target resource according to some enclosed instructions), so
a new media type to encode these instructions is most suitable.

Scope

• For simplicity, limit to standard filesystem operations. A small patch should
cause a small write. More complicated operations may be implemented with a
different patch media type, e.g.

• support for prepending and splicing in the middle of a file, would be a new
media type (application/splice?)

• Sophisticated delta algorithms, e.g. VCDIFF, could be registered as a media
type.

• Splices/insertions can cause the whole file to be rewritten. Servers shouldn’t
be required to implement this just to support simpler operations.

Forward compatibility
What about future extensions?

• By requiring that at least one Content-Range field to be present in the patch,
use of a field different than Content-Range field can be used as an extension
mechanism.

Existing Formats

• Idea: 206 Partial Content with multipart/byteranges indicates the
response is a wrapper, not the literal resource

• Likewise, the PATCH method indicates the request is not the literal resource,
but instructions for processing.

--THIS_STRING_SEPARATES
Content-Range: bytes 2-6/25
Content-Type: text/plain

23456
--THIS_STRING_SEPARATES
Content-Range: bytes 17-21/25
Content-Type: text/plain

78901
--THIS_STRING_SEPARATES--

Possible Syntaxes

• Existing multipart/byterange format

• Adapt existing message/http format for requests targeting only one range

• Create binary format — should be suitable for multipart responses too

Example: Log files

• Provide a byte offset to ensure that the remote copy matches the local copy 

PATCH /log/prod-prndl-mysql3/mysqld-2023-03-05.log HTTP/1.1
Content-Type: message/byterange

Content-Range: 4275-5130/*

2022-10-26 23:47:59.500681Z Manifest version: 1
2022-10-26 23:47:59.511891Z Loaded Persona Generation ID from manifest:1
2022-10-26 23:47:59.512362Z PersonaType:3 is in the manifest
2022-10-26 23:47:59.515182Z PersonaType:5 is in the manifest
2022-10-26 23:47:59.515222Z PersonaType:4 is in the manifest
2022-10-26 23:47:59.515263Z All default System/System Proxy present
2022-10-26 23:47:59.535016Z Loaded persona manifest

Example: Log files

• Or omit the offset, and append to the end of the resource

PATCH /log/prod-prndl-mysql3/mysqld-2023-03-05.log HTTP/1.1
Content-Type: message/byterange

Content-Range: */*

2022-10-26 23:47:59.500681Z Manifest version: 1
2022-10-26 23:47:59.511891Z Loaded Persona Generation ID from manifest:1
2022-10-26 23:47:59.512362Z PersonaType:3 is in the manifest
2022-10-26 23:47:59.515182Z PersonaType:5 is in the manifest
2022-10-26 23:47:59.515222Z PersonaType:4 is in the manifest
2022-10-26 23:47:59.515263Z All default System/System Proxy present
2022-10-26 23:47:59.535016Z Loaded persona manifest

Example: Segmented Uploads

• Upload a file in parts, or complete uploading an interrupted upload.

• Nit: Resuming an interrupted upload requires that the server preserves state
from an unfinished request.

PATCH /data/bulk.json HTTP/1.1
Content-Type: message/byterange
If-None-Match: *

Content-Range: 0-99/200
Content-Type: application/json

First 100 bytes of content…

PATCH /data/bulk.json HTTP/1.1
Content-Type: message/byterange
If-Match: “e4912”

Content-Range: 100-199/200
Content-Type: application/json

Last 100 bytes of content…

Questions?

