

FACULTY OF SCIENCE Communication Networks

Alternative Best Effort (ABE) for Service Differentiation: Trading Loss versus Delay

Steffen Lindner, Gabriel Paradzik, Michael Menth

Published in IEEE/ACM Transactions on Networking https://doi.org/10.1109/TNET.2022.3221553

http://kn.inf.uni-tuebingen.de

Motivation

Overview

Credit Devaluation

Implementation in Linux

Results

Conclusion

- Bufferbloat leads to temporarily long end-to-end delays
 - Real-time applications, e.g., VoIP, may be affected
- DiffServ may be used to offer various per-hop behaviors for service differentiation
 - Typically degrades best effort service for non-priority traffic
 - Controversial in the context of network neutrality
- ► Idea: Provide low-delay forwarding at the expense of additional packet loss
 - Without degrading best effort service
 - Users may choose between low-delay and best effort service
- ► ISPs may therefore leave the choice of PHB to end users

TABLE IREALTIME APPLICATIONS WITH REQUIREMENTS REGARDING
END-TO-END DELAY AND PACKET LOSS.

Application	E2E delay	Packet loss	Source
Online gaming (FPS) Cloud gaming Voice over IP (VoIP)	$\begin{array}{r} 20 \text{ ms} - 80 \text{ ms} \\ \leq 50 \text{ ms} \\ \leq 150 \text{ ms} \end{array}$	$\leq 5\% \leq 5\% \leq 5\% = 1\% - 3\%$	[2] [3] [4] [5] [6] [7]

Has been already discussed in IETF

- draft-hurley-alternative-best-effort (2000)
- draft-you-tsvwg-latency-loss-tradeoff (2016)
- Existing approaches
 - Are complex, e.g., require per-flow state
 - Only evaluated in simulations

- Deadlines, Saved Credits, and Decay (DSCD)
 - Novel scheduler for best effort (BE) and alternative best effort (ABE)
 - Runs locally at a bottleneck node
 - Objective: BE traffic is not degraded by ABE traffic

A DSCD-enabled node consists of

- Two FIFO queues; one for BE, one for ABE
- A FIFO-based credit queue
- Two class-specific counters (BE, ABE)

Arriving packets are enqueued in their class-specific FIFO queue 1

- Credit element with packet's size and class is added to credit queue
- ABE packets are equipped with deadline T_d

Packets are dequeued if the class-specific counter has enough credit 2

- ABE packets that exceed their deadline T_d are dropped
- Credit is consumed when packets are dequeued

Credit elements are dequeued if no class has enough credit 3

- Credit of dropped ABE packets remains in the system
- Can be used to serve subsequent ABE packets faster
- FIFO order ensures service for BE packets
- \rightarrow ABE packets receive low-delay service with higher packet loss

- Credit should not remain in the system for infinite time
 - Users may send unnecessary data to accumulate credit
 - Credit should vanish after congestion ends
- Credit is devaluated
 - Exponentially with rate λ between two dequeue operations $\rightarrow t_h = \frac{\ln(2)}{\lambda}$
 - Linearly with link bandwidth *C* if both queues are empty

DSCD is implemented in the Linux Network Stack

- Implemented as egress QDisc
- Efficient approximation of the exponential function
- Precise bandwidth estimation algorithm

Approximate e-function through piecewise linear function of 2^{-x}

•
$$f(x) = \frac{|x|-x+2}{2^{|x|+1}}$$
, for $x > z$

•
$$g(x) = 1 - \ln(2) \times x$$
, for small values of $0 \le x \le z$

- Bandwidth Estimation Algorithm
 - Required for linear credit devaluation after congestion period
 - Leverages the moving average UTEMA¹ to weight sent bytes and transmission times
 - Considers intervals when queue is backlogged
 - Works even with low link utilization

Example

- Bursty traffic with offered load $\rho = 0.5$
- Bandwidth of the link changes over time

I	Algorithm 4: EstimateBandwidth
	Input : Packet p
1	if backlogged then
2	$\Delta = t_{now} - lastRateUpdate$
3	$S_B = S_B \cdot exp(-\mu \cdot \Delta) + lastPktSize$
4	$S_T = S_T \cdot exp(-\mu \cdot \Delta) + (t_{now} - lastDequeue)$
5	$C = S_B/S_T$
6	$lastRateUpdate = t_{now}$
7	if $Q[ABE].len + Q[BE].len > 0$ then
8	backlogged = true
9	else
10	backlogged = false
11	$lastDequeue = t_{now}$
12	lastPktSize = p.len

1. M. Menth, F. Hauser, "On Moving Averages, Histograms and Time-Dependent Rates for Online Measurement", https://doi.org/10.1145/3030207.3030212

- Efficiency of the DSCD Implementation
 - Comparison of DSCD with standard QDiscs (FQ-Codel, FQ-Pie, SFQ, ...) on a 100 Gbit/s bottleneck
 - 32 TCP flows, 50/50 BE/ABE in case of DSCD

QDisc	TCP goodput (Gbit/s)	CPU load (%)
DSCD	89.08	36.27
FQ-CoDel	89.02	38.99
FQ-PIE	89.00	44.21
SFQ	89.03	38.72
pfifo	89.06	35.41

TABLE III TCP GOODPUT AND CPU LOAD OF VARIOUS LINUX QDISCS.

Semi-virtualized testbed with dedicated 10 Gbit/s NICs

- Up to five VMs send traffic through a 1 Gbit/s DSCD-based bottleneck
- RTT VM delays packets to a configured RTT

 TABLE IV

 DEFAULT CONFIGURATION OF TESTBED AND DSCD ALGORITHM.

Parameter	C	RTT	B_{max}	T_d	t_h	T_q
Value	1 Gbit/s	100 ms	25 ms	10 ms	100 ms	1

Performance of DSCD with Non-Adaptive Traffic with Bursts

- UDP-based traffic pattern with bursts with an offered load $\rho \in \{0.95, 1.2\}$
- 90% of traffic is randomly labeled as BE, the other 10% as ABE

Performance of DSCD with Non-Adaptive Traffic with Bursts

- UDP-based traffic pattern with bursts with an offered load $p \in \{0.95, 1.2\}$
- 90% of traffic is randomly labeled as BE, the other 10% as ABE

- Performance of DSCD with Periodic Traffic and TCP Traffic
 - Periodic UDP-based ABE traffic
 - Different number of background BE TCP flows

- Performance of DSCD with Periodic Traffic and TCP Traffic
 - Periodic UDP-based ABE traffic
 - Different number of background BE TCP flows

- ► We presented DSCD
 - High performance QDisc that supports ABE and BE scheduling
 - Implemented in the Linux Network stack and achieves 100 Gbit/s
- Presented an efficient approximation of the exponential function
 - Is used for credit devaluation & bandwidth estimation
- Bandwidth estimation
 - Works even at moderate link utilizations
- Experiments show that DSCD
 - Offers low-delay service for ABE without degrading BE traffic
 - ABE traffic turns packet loss into delay advantage

Any Questions?

Alternative Best Effort (ABE) for Service Differentiation: Trading Loss versus Delay Published in IEEE/ACM Transactions on Networking

https://doi.org/10.1109/TNET.2022.3221553

- Inter-Class Unfairness with TCP Cubic
 - Smaller queuing delay of ABE traffic may introduce unfairness with TCP
 - Half-life time can control unfairness through higher packet loss

- Inter-Class Unfairness with TCP BBR
 - Smaller queuing delay of ABE traffic may introduce unfairness with TCP
 - BBR does not react to higher packet loss

