Loss Detection for ICN: Probe-based approach

Mazuaki Ueda, Takahiko Kato, Chikara Sasaki, Atsushi Tagami
 KDDI Research, Inc.
 IETF116 ICNRG

Ueda, Kazuaki, et al. "Revisiting Loss Detection in NDN: Detecting Spurious Timeout using Probe Interest." *GLOBECOM 2022-2022 IEEE Global Communications Conference*. IEEE, 2022.

Agenda

- Loss detection in ICN
 - (Congestion Control is out of scope)
- Problem: Spurious timeouts in the end host-based approach
- Proposal: NDN-PTO
- Evaluation & Conclusion

Loss Detection and Recovery in ICN

In-Network Loss Detection and Recovery in ICN

Forwarding Strategy

- Detect packet losses for the path
- 👍: Rapid reaction for the path failure
- ②: Complex interaction between App and strategy's behavior^[1]

[1] Abraham, Hila Ben, and Patrick Crowley. "Controlling strategy retransmissions in named data networking." 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). IEEE, 2017.

In-Network Loss Detection and Recovery in ICN

Face/Link Layer Protocol

- Detect packet losses <u>between two ICN routers</u>
- WLDR (Wireless Loss Detection and Recovery) in hICN^[2]
- NDNLP Reliability Mode in NDN
- Simple mechanism and Fast recovery

[2] Carofiglio, Giovanna, et al. "Leveraging ICN in-network control for loss detection and recovery in wireless mobile networks." Proceedings of the 3rd ACM Conference on Information-Centric Networking. 2016.

Failures in the past demo

Tagami, Atsushi, et al. "Tile-based panoramic live video streaming on ICN." 2019 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, 2019.

In-Network Loss Detection and Recovery in ICN

- This feature can provide loss-less communication in ICN, but...
 - Must be configured on <u>all hops</u> to rely on this feature
 - It cannot always cope with the congestion/overload

End host-based Loss detection and recovery in NDN

Current solution: Retransmission timeout

- Duplicate ACKs: cannot be applied to NDN (No ACK packets)
- Timer value (RTO) is calculated from recent RTTs
 - $RTO = \max(SRTT + 4 \times RTTVAR, \min RTO)$

Internet Engineering Task Force (IETF) V. Paxson Request for Comments: 6298 ICSI/UC Berkeley Obsoletes: 2988 M. Allman Updates: <u>1122</u> ICSI Category: Standards Track J. Chu ISSN: 2070-1721 Google M. Sargent CWRU June 2011				
Computing TCP's Retransmission Timer				
Abstract				
This document defines the standard algorithm that Transmission Control Protocol (TCP) senders are required to use to compute and manage their retransmission timer. It expands on the discussion in <u>Section 4.2.3.1 of RFC 1122</u> and upgrades the requirement of supporting the algorithm from a SHOULD to a MUST. This document obsoletes RFC 2988.				
Status of This Memo				
This is an Internet Standards Track document.				
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in <u>Section 2 of RFC 5741</u> .				
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <u>http://www.rfc-editor.org/info/rfc6298</u> .				
	Internet Engineering Task Force (IETF) V. Paxson Request for Comments: 6298 ICSI/UC Berkeley Obsoletes: 2988 M. Allman Updates: 1122 I. ICSI Category: Standards Track J. Chu ISSN: 2070-1721 Computing TCP's Retransmission Timer Abstract This document defines the standard algorithm that Transmission Computing TCP's Retransmission Timer Abstract This document defines the standard algorithm that Transmission Control Protocol (TCP) senders are required to use to compute and manage their retransmission timer. It expands on the discussion in Section 4.2.3.1 of REC 1122 and upgrades the requirement of supporting the algorithm from a SHOULD to a MUST. This document obsoletes <u>REC 2988</u> . Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of REC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at <u>http://www.rfc-editor.org/info/rfc6298</u> .			

"ndncatchunks" uses PCON^[3] which uses timer-based loss detection

[3] Schneider, Klaus, et al. "A practical congestion control scheme for named data networking." *Proceedings of the 3rd ACM Conference on Information-Centric Networking*. 2016.

Problem: Spurious timeout

Spurious timeout (STO)

(E.g., RFC5682)

- Known issues in TCP: **false loss detection** in the timer-based algorithm
- When an RTT of packet exceeds RTO, the packet is considered as lost
 - Delay: retransmission at wireless link, queuing delay, etc.
- \rightarrow Decreased throughput

Timer-based approach in NDN introduces STOs more frequently than current Internet

• RTT of packet is not **constant** in the multi-path/producer model

STO from in-network cache

Example scenario: in-network cache causes STO

- First N Data are served from closer cache (RTT: t_1)
- The rest of Data are served from producer (RTT: t_2)
- RTT of N + 1 Data (t_2) exceeds RTO (t_1), then consumer detects **packet loss**

Existing countermeasures for STO

 $RTO = \max(SRTT + 4 \times RTTVAR, \min RTO)$

• PCON: Set large minRTO parameter to increase RTO

Decrease spurious timeout at the expense of **loss response delay** Optimal minRTO is topology dependent and unknown a priori

How to deal with STO in NDN?

Problem: Traditional ReTx Timer alone does not match the NDN (RTT can change significantly due to existence of multiple source nodes)

Idea: Obtain and update the <u>RTT of new path</u> to determine "actual" packet loss

Solution: NDN-PTO (Probe TimeOut) Use a "Probe Interest" to get information of current path info.

Proposal: NDN-PTO

Proposal: NDN-PTO

Proposal: NDN-PTO

Detailed design of NDN-PTO

Core components: two timers 🔀 and probe Interest 🔍

2 Probe Timeout (PTO) and Loss Detection Timer (LDT)

- PTO: **<u>Short timer</u>** calculated from recent RTTs and triggers probe
- LDT: <u>Long timer</u> calculated from the highest RTT and determines actual packet losses
 - Updated from probe response OR inflight Data

Detailed design of NDN-PTO

💊 <u>Probe Interest</u>

- A single Interest which requests a next Data
 - Assumption: next Data returns from the similar path of current inflight Data
- Obtain the latest RTT and update LDT with it

CCNinfo (RFC9344) will be a good alternative to obtain path info

We evaluated performance of NDN-PTO with ndnSIM We compare NDN-PTO and PCON with four minRTO settings Metrics

- 1. Goodput
- 2. Packet overhead (# of retransmission, # of spurious timeouts)
- 3. Data retrieval delay (data reception time 1st requested time)
 - Rapid loss detection can shorten this delay

Evaluation scenario1: Switching of producer

Scenario1: Goodput

※Optimal minRTO in this topology: 200ms (larger than the RTT for remote producer:120ms)

Scenario1: Overhead and Delay

Overhead

STO occurred in the PCON with low minRTO \leftarrow

File	size	1 MB	5 MB	10 MB
	NDN-PTO	893	804.5	845.5
Average overhead	PCON (10 ms)	1081.5	812	914
	PCON (100 ms)	1056	850.5	984.5
	PCON (200 ms)	850.5	981	1256.5
	PCON (1000 ms)	850.5	1856.5	2885
	NDN-PTO	3	3	2.5
Average # of STO	PCON (10 ms)	204	332.5	450.5
	PCON (100 ms)	229.5	369	494.5
	PCON (200 ms)	0	0	0
	PCON (1000 ms)	0	0	0

NDN-PTO dramatically **reduced** the STO and achieved low overhead

Conclusion

- End host-based loss detection: promising backup plan, but timer-based schemes cause **spurious timeout**
- Proposal: NDN-PTO obtain the latest RTT information with "probe Interest" to detect packet loss accurately
- From the simulation, NDN-PTO achieved both accurate loss detection and higher goodput without topology-dependent parameters
- Next steps:
 - Evaluate the performance in the actual testbed
 - Evaluate the interaction between NDN-PTO and the In-network ReTx

Scenario2: Global content distribution

Performance of general content distribution

This dumbbell topology follows the actual **EU-JP global testbed**

Scenario2: Goodput

*Optimal minRTO in this topology: 1000ms (larger than the RTT for remote producer:230ms)

Scenario2: Overhead and delay

Overhead Delay PCON with minRTO ≤ 200 ms suffered from STOs in global content delivery Similar trends to scenario 1 File size $1 \,\mathrm{MB}$ 5 MB 10 MB 3.0 NDN-PTO 2594.75 1666.25 1711.5 2560.5 1439.75 PCON (10 ms) 1418 2.5 Average overhead 2560.5 1418 1439.75 **PCON** (100 ms) (200 (200 (200) 0.5 (PCON (200 ms) 2560.5 1418 1439.75 2.0 -2272.75 PCON (1000 ms) 2951 2541.75 5.75 12.25 NDN-PTO 1.25 PCON (10 ms) 134.5 10 156.25 Average # of STO **PCON** (100 ms) 10 156.25 134.5 1.0 PCON (200 ms) 10 156.25 134.5 PCON (1000 ms) 0 0 0 0.5 NDN-PTO reduced the STO and PCON PCON PCON PCON NDN-PTO (200ms) (1000ms) (100ms) (10ms) achieved low overhead

