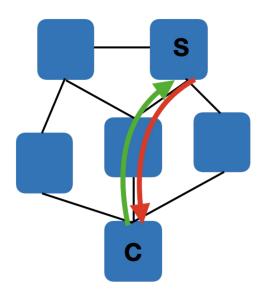
Reflexive Forwarding Update


https://datatracker.ietf.org/doc/draft-oran-icnrg-reflexive-forwarding/05/

Dave Oran Dirk Kutscher

ICNRG @ IETF-116

Recap: Motivation

- Many scenarios benefit from ICN's robust and secure twoway exchange through INTEREST/DATA
- There are other scenarios though where that is not sufficient
 - RESTful communication, e.g., Web over ICN
 - Remote Method Invocation
 - Phone-home scenarios
 - Peer state synchronization
- Desirable features
 - Pushing Data
 - RESTful-like session continuation
- Our goal: enable these scenarios in an ICN-idiomatic way
 - As a foundation for the scenarios above and more
 - Most relevant (probably): RESTful ICN

Design Overview - Recap

- Utilize forwarder state established by Interest sent from consumer to producer
 - Allow for not just a returning Data message, but a Reflexive Interest to flow from producer to the unique consumer who sent the original Interest
- Define a scheme for *Reflexive Name Prefixes*
 - Can only be seen and understood by already established consumer/producer pairing
 - Do not reveal consumer identity (temporary names within the RI context)
- Provide forwarder mechanism for routing these back to consumer from producer
- Couple state of the original Interest/Data exchange with the reflexive exchange(s)
 - Ensure state gets mapped correctly by both consumer and producer
 - And unwound properly at forwarders when Data message responding to original Interest is sent back

Current Status

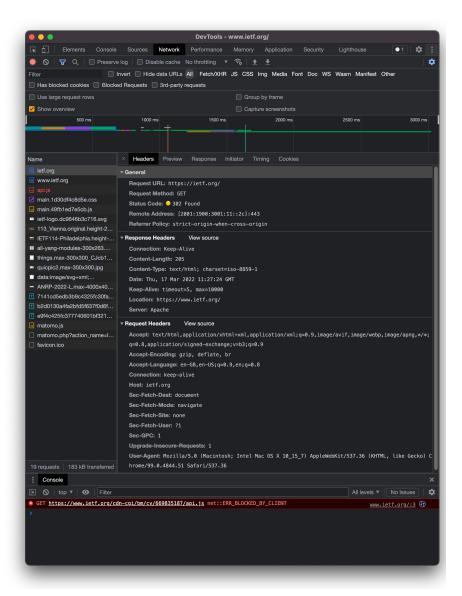
- Version -05 just published
- Addresses comments, especially really helpful ones from Hitoshi Asaeda (see next slide for changes)
- Can review changes via issues recorded on Github (https://github.com/daveoran/draftoran-icnrg-reflexive-forwarding/issues)

Changes in -05

- Cleaned up terminology
 - Fixed confusion about Reflexive name
 Component/Segment and Reflexive Name Prefix TLV
 - Added a terminology section
- Fixed the protocol ladder diagram labeling
- Fixed IANA Registry references and instructions
- Bunches of small editing changes for clarity of exposition

Next Steps?

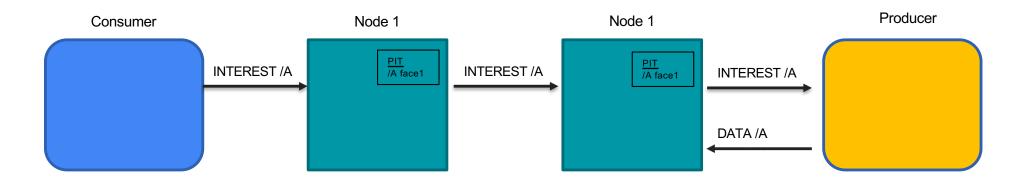
- NICT has expressed interest in doing an implementation based on their *Cefore* CCNx forwarder.
- Adopt as ICNRG draft?
 - Need lots of eyes and opinions by ICNRG participants on this, as the chairs are the coauthors.


That's about it. Questions & Comments?

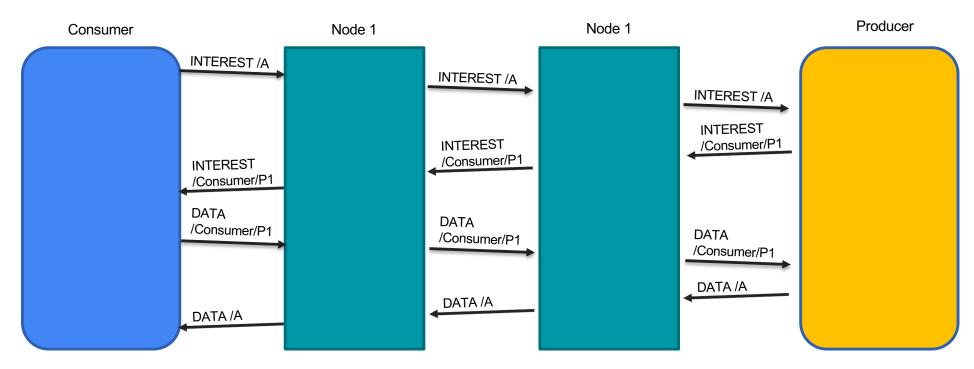
Please review and comment on the Latest draft!!!

Backup Slides

Application Layer Interactions


- Web
 - RESTful communications: series of requests in session context – through representational state transfer
 - Considerable request sizes: header fields, cookies, input data (GET, PUT, POST)
- Remote Method Invocation
 - Authentication/authorization info
 - Potentially really large input parameters
 - think "map-reduce"

Motivations for multi-way Handshakes


- Remote Method Invocation (RMI, aka RPC)
 - Fetch arguments
 - Perform authorization
 - Separate invocation from results return
- Phone-home for sensor/actuators
 - Fetch from gateway rather than push from device
 - Eliminate polling
- Peer State Synchronization
 - 3-way (or more) handshakes needed to avoid hazards
 - Complicated state machines for things needing negotiation (e.g. SIP/SDP)

Requests parameters in INTEREST messages?

- Large input data not advisable
 - Flow balance
 - Computional overload attacks (server has to process arbitrary client data...)
 - Extra state on forwarders
 - Potential INTEREST fragmentation

Reverse INTEREST for Parameters to Consumer?

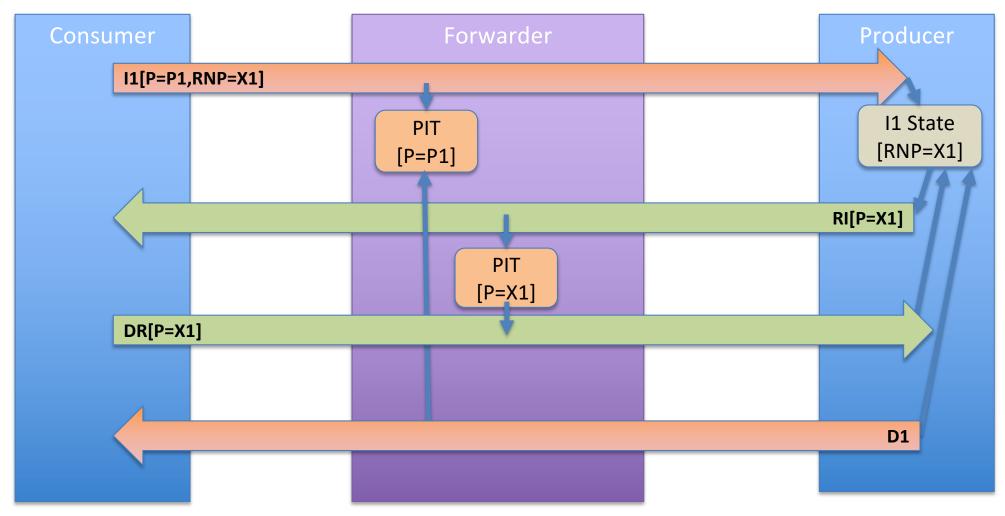
- Would require consumer identity (disclosure) with routable prefix
 - O Not idiomatic in ICN (no source addresses/names)
 - O Consumer mobility much harder
 - O Potential reflection attacks (consumer can provide arbitrary "paramter prefix")
- Correlating two independent INTEREST/DATA exchange complicates state machine on both sides
 - O Catastrophic if done wrong for key exchange

Outline

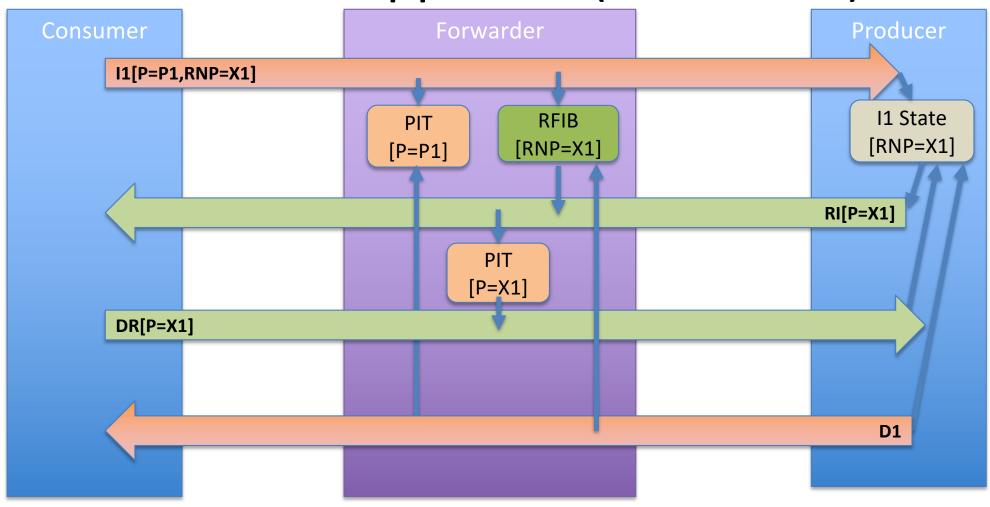
- Motivations for multi-way interactions in ICN
- Problems with existing approaches.
- Overview of the Reflexive Forwarding design
- Use Cases for reflexive forwarding
- If time available:
 - Implementation implications
 - Operational considerations
 - Security and Privacy considerations

Problems with Existing approaches: Pushing Data

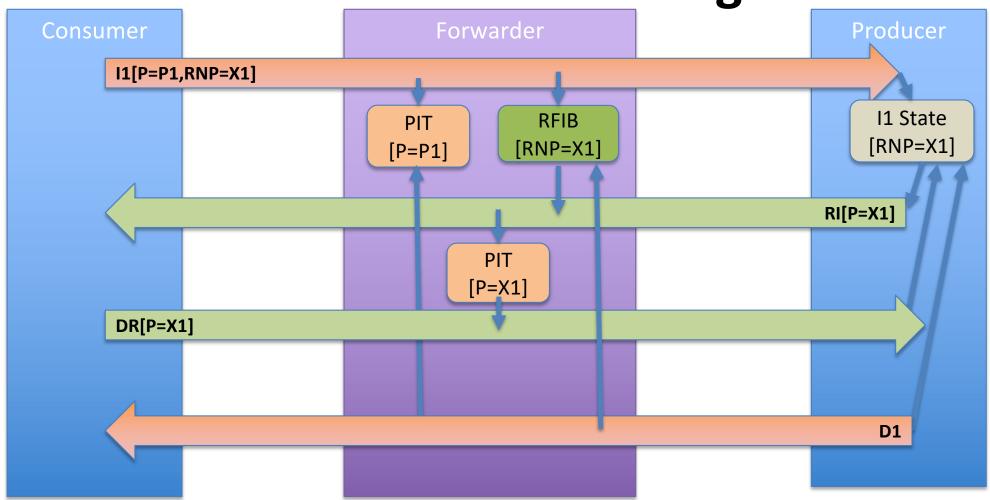
- Interest messages get big
 - Might need fragmentation (ugh!)
 - Messes up assumption of small(ish)interests for congestion control
- Need to sign interests for pushed data to be believed
 - Bigger interest still
 - Computational cost on producer to check signature
- Wasted bandwidth if computation started by pushed data winds up abandoned


Problems with Existing approaches: Independent Exchanges

- Consumer needs a routable name prefix
 - Exposes consumer to unwanted traffic
 - Puts burden on routing to propagate far enough to reach producer
 - In mobile environments, consumer becomes producer as well, necessitating producer mobility machinery for pure client-initiated client/server exchanges
- Consumer gets to choose the name to use to reach it by
 - Opens up big hole to mount reflection attacks
- Correlating the two independent Interest/Data exchanges can be errorprone
 - Catastrophic if done wrong for key exchange
 - Complicated state machine management (c.f. SIP & SDP)

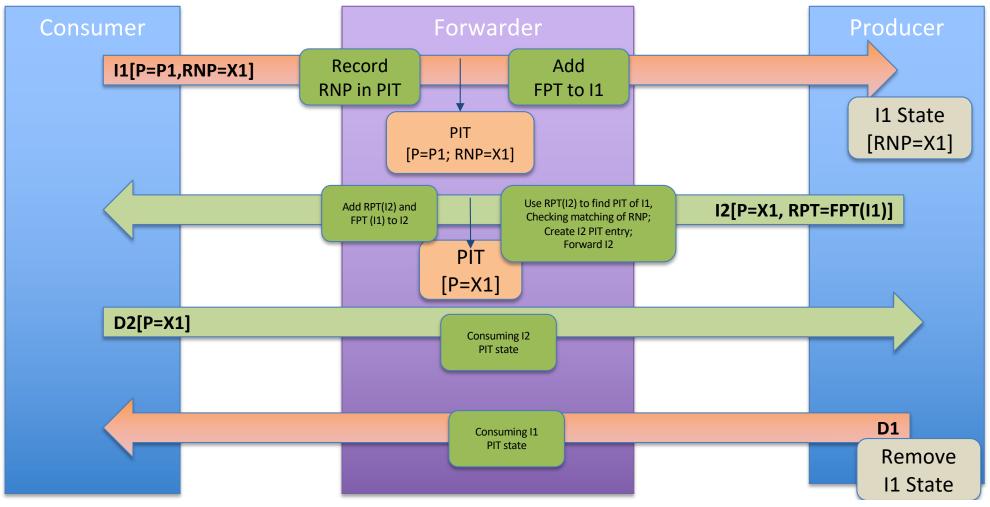

Design Overview

- Utilize forwarder state established by an Interest sent from consumer to producer
 - Allow for not just a returning Data message, but a Reflexive Interest to flow from producer to the unique consumer who sent the original Interest
- Define a scheme for *Reflexive Name Prefixes*
 - These can only be seen and understood by the already established consumer/producer pairing
 - They do not reveal consumer identity (temporary names within the RI context)
- Provide a forwarder mechanism to allow routing these back to the consumer from the producer
- Couple the state of the original Interest/Data exchange with the reflexive exchange(s)
 - ensure state gets mapped correctly by both consumer and producer
 - and unwound properly at the forwarders when the Data message responding to the original Interest is sent back


High-Level Protocol Overview

Previous Approach (version 01)

Protocol Walk-through



New Approach (version 02)

- PIT Tokens for reverse forwarding
 - Much more efficient PIT lookups
 - No special RFIB forwarder requirements
- Forward Direction PIT tokens (FPTs)
 - Attached to
 - Forwarded Interests in upstream direction
 - Forwarded Reflexive Interests in downstream direction
- Reverse Direction PIT tokens (RPTs)
 - Attached to
 - Reflexive Interests in downstream direction
 - Data responses to Interests in both directions

New Approach (version 02)

Naming of Reflexive Interests

- New Name Component type for CCNx and NDN
 - High-order component of any reflexive name, used to form prefix
- Value is a 128-bit random number
 - Entropy to uniquely identify the consumer for duration of the exchange
 - Different value for each outer exchange limits linkability
 - UUID (RFC4122)
- Possible reflexive names that can be constructed:
 - A single full name of object to fetch
 - Prefix out of which producer/consumer name multiple objects
 - Full name of a FLIC Manifest

Forwarder Operation

- Create and manage short-lifetime FIB entries for any reflexive name prefix from an incoming Interest.
- Query these FIB entries (and no others) if an Interest arrives whose first name component is of type Reflexive Name Prefix
- FIB entry consumed along with original PIT entry when the data message is returned by the producer
 - Could be removed lazily due to randomness properties of the values

New Node Behavior

- Consumer, Producers, Forwarders
- Forwarder modifications include PIT Token generation when receiving INTERESTs with Reflexive name prefix
- All modifications should be doable for high-performance and standard software-based forwarders
- Details in the draft

CCNx Encoding

Reflexive Name TLV

+===========	+=======	+=====+
Abbrev	Name	Description
+============	+=========	+======+
T_REFLEXIVE_NAME 	Reflexive Name Component 	Name component to use as name prefix in Reflexive Interest Messages +

Hop-by-hop PIT Token TLVs

+======+====== Abbrev Name	Description
_	1-32 byte value chosen by the forwarder for a PIT entry communicated upstream toward a producer
T_RPT Reverse PIT TOKEN 	1-32 byte value placed in either a Data packet or a Reflexive Interest packet by a producer or forwarder to allow the upsteam forwarder to access the PIT entry identified by a received forward PIT Token (FPT) +

NDN Encoding

- Reflexive Name Component Type
 - Need a new component type (type RNP)
- Reflexive Name Prefix TLV

```
- RNP ::= | RNP-TYPE | TLV-LENGTH (=16) BYTE8)
```

- PIT Tokens for NDNLPv2
 - Need additional type for reverse PIT token

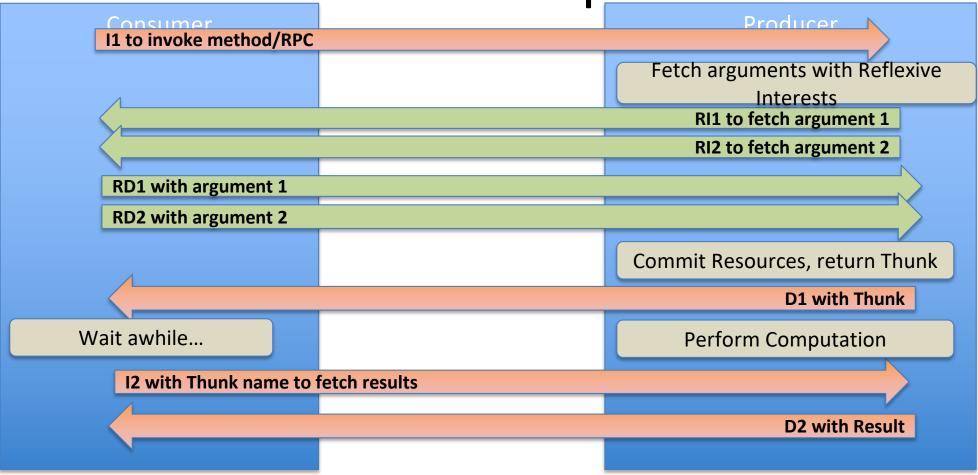
```
+-----+
| LpHeaderField | PitToken |
+-----+
| PitToken | PIT-TOKEN-TYPE TLV-LENGTH 1*320CTET> |
+----+
```

+-----+
| LpHeaderField | ReversePitToken | |
+-----+
| ReversePitToken | PIT-TOKEN-TYPE TLV-LENGTH 1*320CTET> |
+----+

Current NDNLPv2 PIT Token

Proposed Reverse PIT Token

Typical Use Cases

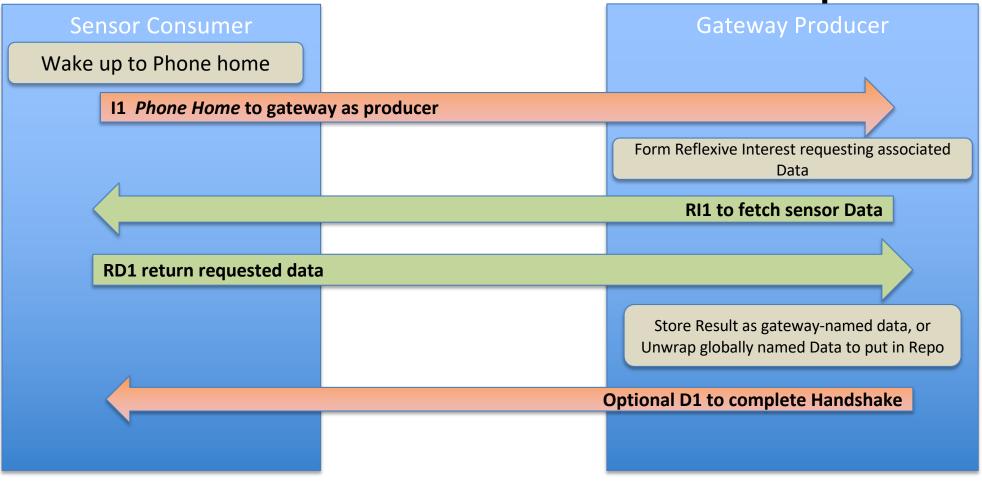

- Remote Method Invocation
- RESTful Web Interactions
- Data Pull from sensors

Remote Method Invocation

(Pioneered by RICE)

- RICE uses (an earlier version of) Reflexive Interests for the following:
 - Retrieve authentication/authorization information from consumer
 - Fetch arguments to method calls
- Completion can be either:
 - Immediate through the returning Data message, or
 - Deferred to a separate exchange to retrieve results buy utilizing Thunks.
- Illustrated on following slide

RMI Example


RESTful Web Interactions

- Only place RESTful request via the URI in the initial Interest
- Get all the parameters, including AuthZ with Reflexive Interests
 - Cookies, Accept-foo headers, other HTTP goop
- Return results via regular Data messages

Data Pull from sensors

- Sensor only needs to act as consumer
- Wake up (on timer or event)
- "Phone Home" to an application gateway or REPO
- This provokes a Reflexive Interest/Data exchange initiated from the gateway
- Data can either be:
 - Packaged/stored by gateway as the authoritative source
 - Named, encapsulated and signed by sensor itself

Phone Home Data Pull Example

Operational Considerations

- This is **NOT** backward-compatible
 - Need an unbroken chain of forwarders that support reflexive forwarding or things don't work right
- Possible ways to overcome this
 - Ignore the problem; let producers get a no route error if they try to send a reflexive interest.
 This is ugly:
 - how does producer figure out why no route
 - How does he tell consumer that original exchange has failed for this reason may need a new interest return error
 - Bump the CCNx/NDN protocol version on Interests carrying Reflexive Name Prefix TLVs
 - key off this to send back an error from a back-version forwarder
 - · Pretty big hammer!
 - Create a capabilities-exchange protocol so forwarders know capabilities of next hops
 - Lots of work, but we probably need such a thing anyway!

Security Considerations

- This scheme is partly motivated by trying to improve both Security and Privacy:
 - Avoids payloads in Interests that then have to be signed, with associated vulnerability to computational attacks on producers
 - Avoids routable names for consumers so they aren't exposed to various crafted and flooding attacks
 - Avoids sending names crafted by consumers to producers, which can open up reflection attacks

Some things on Security to Consider

- Collisions of Reflexive Name prefixes
 - Avoid by using a crypto-quality PRNG
- Resource pressure on PIT
 - Interests carrying Reflexive Name prefixes are more slightly expensive in both compute and storage
- Privacy
 - Same concerns about leaking information via names as all other cases for CCNx or NDN
 - Use cases may have message exchange and timing patterns that allow easier linkability than independent exchanges

Outlook

- CCNx Key Exchange
- RESTful communication
- Information-Centric Web
- Multi-protocol cookie concept
 - Many protocols utilize "cookie" concept: key exchange, web etc.
 - Idea: minimize number of RTTs (think QUIC 0-RTT)
 - Provide way to integrate a "cookie map" in I1 Interest

Forwarder Operation (1)

- 1. Upon receiving an Interest containing a RNP TLV:
 - MUST record RNP as element of PIT entry for that Interest
- 2. When forwarding an Interest with RNP TLV:
 - MAY generate FPT and append it to the forwarded Interest to be processed by the next hop
- 3. If an Interest contains an RPT:
 - MAY use value to access corresponding PIT entry
 - or do a direct lookup based on the Reflexive Interest Name Prefix

Forwarder Operation (2)

- MUST check that the high-order Name component of Interest is of type RNP
 - IF NOT, simply process the Interest as a normal non-reflexive Interest
 - ELSE treat as Reflexive Interest
 - Create a new PIT entry for the Reflexive Interest
 - Record the FPT (if any, as for other Interests)
 - Look up ingress face from originating Interest's PIT entry and forward the Reflexive Interest on this single face
 - Append RPT from the ingress face information of original Interest's PIT entry, if any
 - Append FPT TLV to Interest if forwarder requires downstream forwarder to supply an RPT in any returning Data packet for this Reflexive interest

Implementation: Forwarders

- Interest Input sharded PITs can be tricky
 - Avoid cross-chard updates whebn handling reflexive interests, or
 - Force reflexive interests into same shard as original interest
- Interest Lifetime extended by possibly multiple RTTs
 - Could be hard for consumer to guess a good value
 - Likely result is consumers grossly overestimating with bad effects when Interests can experience undetected loss
 - May need to have forwarder account for this by adjusting interest lifetime of original interest when reflexive interests arrive
- Interest Aggregation actually this all works out without any changes
 - Like other Interest fields, MUST create separate PIT entry if Interests carry different reflexive name prefix values.

Implementation: Consumers

- Decide how to name data returned for an arriving reflexive Interest
 - Use a plain Data message if lifetime is just the enclosing enchange
 - Encapsulate a whole Data message with its own fullname if global visibility/lifetime is desired
- Set other fields appropriately for data useful within the enclosing exchange
 - Recommended cache time zero or small
 - Data expiry no longer than Interest lifetime of original interest
- Terminate unwanted reflexive Interest arrivals
 - Send a Prohibited Interest Return error
 - Forwarders with then wipe out the corresponding RFIB entry