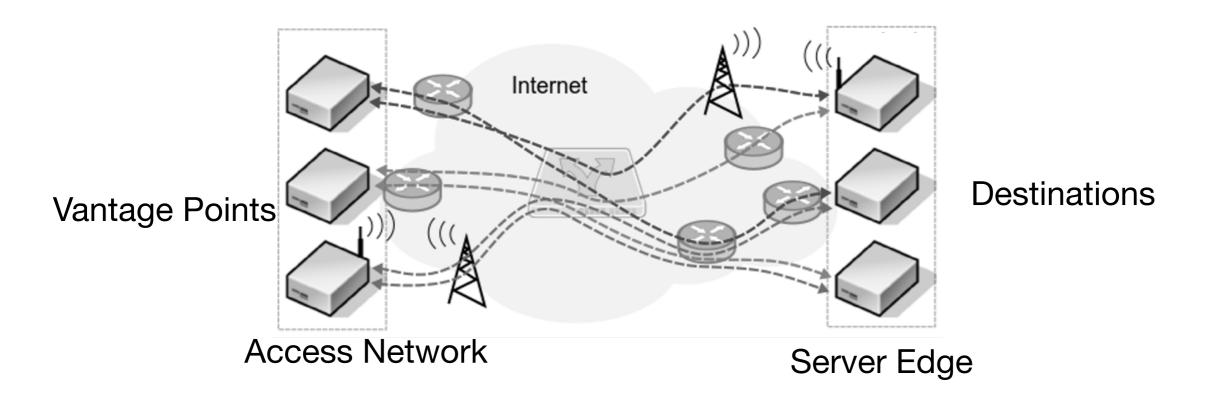
Internet Measurements: IPv6 Extension Header Edition


Ana Custura*
Gorry Fairhurst*

IEPG, Yokohama March 2023

Active IPv6 Measurement is Difficult

- Many access networks do not support IPv6
 - e.g., mobile networks, broadband in Europe
- IPv6 server edge hosting companies, do not always proxy IPv6 request to an IPv6 origin server
- IPv6 Top domains lists not very diverse
- Hard to scan, but there are IPv6 hitlists

IEPG, March 2023

EH Measurement is Harder

- Some devices might not support EH to begin with
- Some hardware does not allow reading deep into a packet
 - Brokeness can be subtle, for network devices that inspect upper layer protocol information
- Network devices can be configured to filter EHs
 - e.g., at access edge or server edge
- Transit networks could be configured to filter EHs

Lots of Differing Results over the Years

- e.g., RFC 7872 [1] data showed traversal as:
 - Destination Options EH: 80-90%
 - Hop-by-Hop Options EH: 45-60%
- But, my own data [2] showed traversal as:
 - Destination Options EH: 70-75%
 - Hop-by-Hop Options EH: 15-20%
- APNIC [3] showed traversal as:
 - Destination Options EH: 30-80%
 - Hop-by-Hop Options EH: near 0%
- And then, JAMES [4] showed traversal as:
 - Destination Options EH: 94-97%
 - Hop-by-Hop Options EH: 8-9%

EH Measurements using a range of tools and vantage points

	Core	Access networks	Server Edge
Internet Core	JAMES - traceroute N. Elkins - custom FTP measurements	APNIC - Custom measurements	UoA - Pathspider RFC 7872 - traceroute N. Elkins - custom cloud measurements
Access Networks	UoA @RIPE Atlas - traceroute	N/A	Jen Linkova @RIPE Atlas - traceroute
Server Edge	N/A	N/A	N/A

Could the measurements, in fact, agree?

- Example 1: choice of cloud provider can influence results
- Example 2: measuring from the edge or the core does too

Where we measure from

- Example 1: choice of cloud provider can influence results
- Where we measure from
- Example 2: measuring from the edge or the core does too
- Example 3: Top 1M lists need a per-AS breakdown
- Example 4: different target server types = different results
- Where we measure to

- Example 5: crowd-sourcing targets = different results
- Example 6: cloud provider targets = different results again

- Example 1: choice of cloud provider can influence results
- Where we measure from
- Example 2: measuring from the edge or the core does too
- Example 3: Top 1M lists need a per-AS breakdown
- Example 4: different target server types = different results

Where we measure to

- Example 5: crowd-sourcing targets = different results
- Example 6: cloud provider targets = different results again
- Example 7: different protocols can reveal path info

How we measure

Example 8: the same path can reveal unexpected results

Example 1: Vantage Points

	Hop-by-Hop Options EH UDP	Hop-by-Hop Options EH TCP
UK (JANET)	11.9%	11.5%
Canada (OVH)	19%	19.9%
Singapore (OVH)	17.4%	25.2%
Netherlands, Belarus, US, Singapore, UK, Canada (DigitalOcean)	0	0
US, Canada, Singapore, Japan, India (Linode)	0	0

Percentage End-to-End traversal for an 8 Byte HBH Options EH, measured in 2022

- Diverse vantage points do tell better stories!
- Digital Ocean, AWS, Linode did not support HbH options
 - Still a valid measurement point!
 - But, cannot do wide scale measurements from here

Example 2: Vantage Points

	Hop-by-Hop Options EH UDP	Destinations Options EH UDP
Access Networks: RIPE Atlas	7-16%	77-96%
Internet core: various cloud providers	11-25%	92-97%

Percentage traversal for an 8 Byte HBH Options EH, from ~1000 RIPE Atlas vantage points vs 30 cloud provider vantage points, to cloud/R&E destinations, measured in 2022

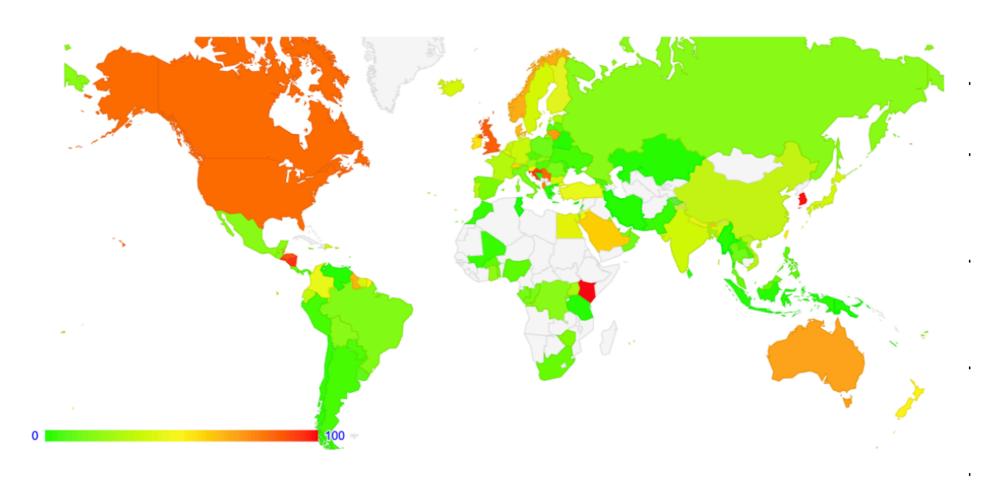
- Edge v. core networks reveal a difference:
 - Networks can also differ: e.g., mobile, satellite, ...

Example 3: Destinations

	Per-Host	Per-AS
UK (JANET)	71%	92%
UK (JANET)	12%	38%
Canada (OVH)	72%	94%
Canada (OVH)	19%	59%

Top 1X lists: Looking at just hosts can make things look better or worse that they actually are!

End-to-End percentage traversal for an 8 Byte Destination Options EH, to the authoritative DNS servers for n=20082 destinations in 2867 different ASes.


- One third of all destinations are hosted by a small number of major hosting companies that do not support some EH types.
- Per-AS difference versus per-host difference for the same dataset

Examples 4-6: Destinations

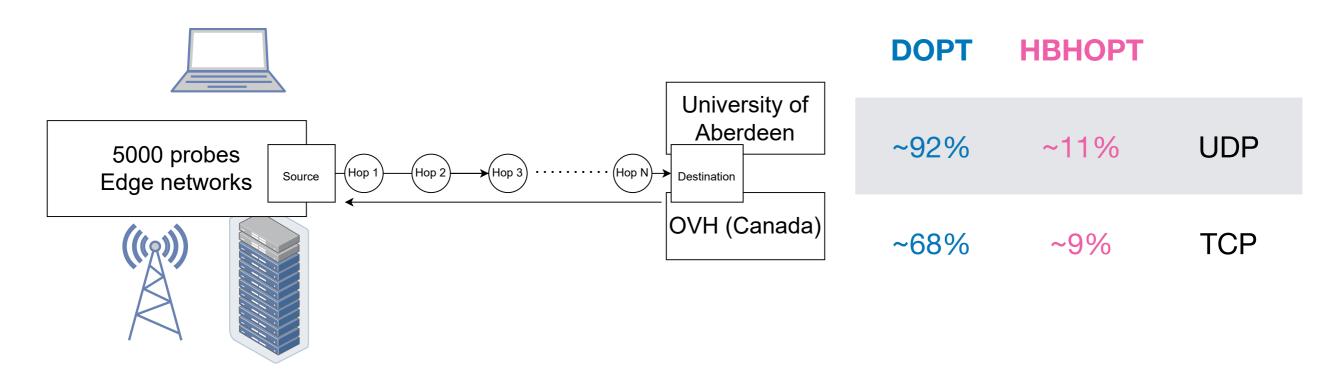
Dataset	D08	 HBH8
Web	11.88%	40.70%
servers	(17.60%/20.80%)	(31.43%/40.00%)
Mail	17.07%	48.86%
servers	(6.35%/26.98%)	(40.50%/65.42%)
Name	15.37%	43.25%
servers	(14.29%/33.46%)	(42.49%/72.07%)

- RFC 7872: different destination infrastructure = different results
- Crowd sourcing destinations (APNIC): a different story
- FTP measurements (Nalini Elkins): a different story

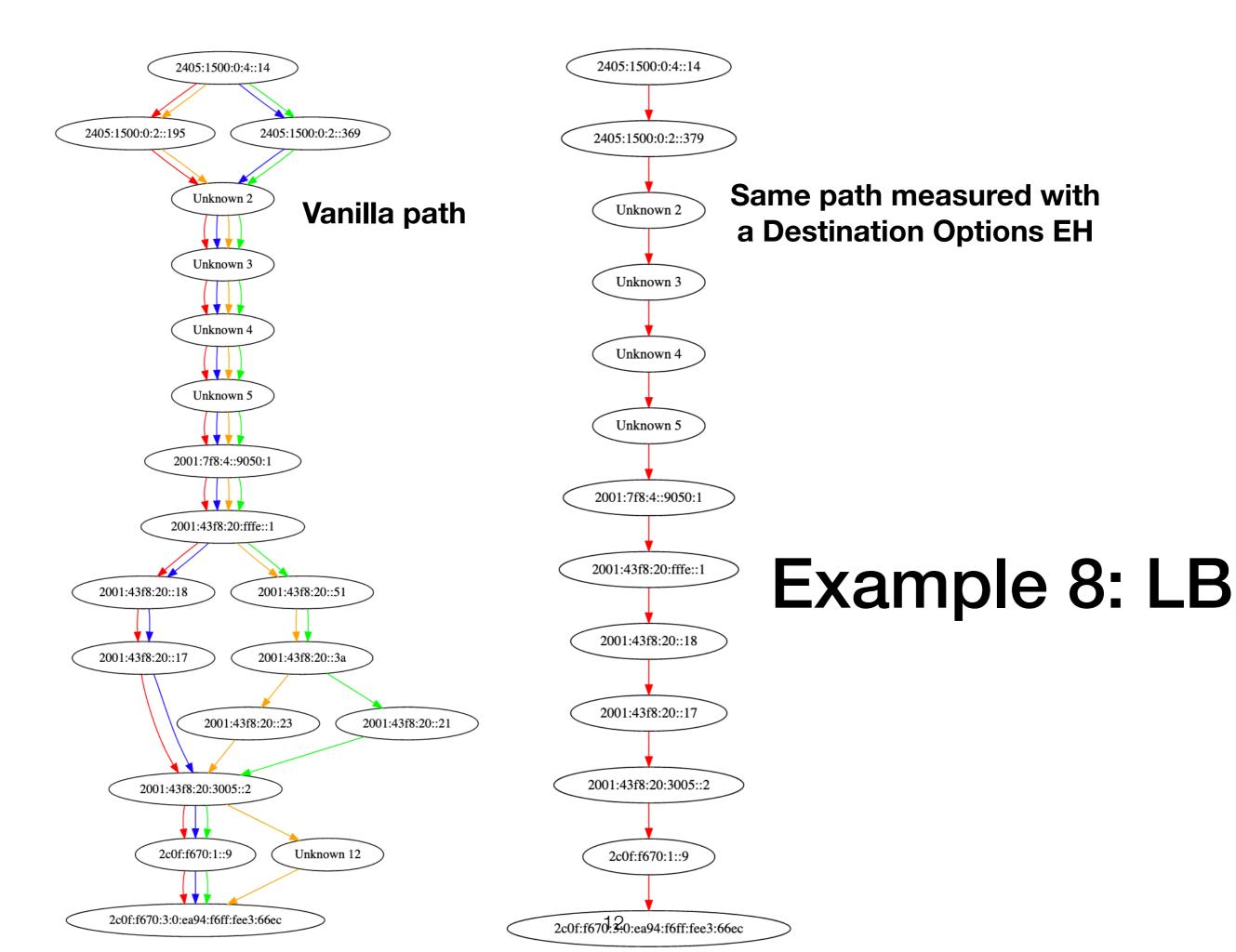
Examples 4-6: Destinations

- Figure 8 DST option drop rate, October 2022.
- RFC 7872: different destination infrastructure = different results
- Crowd sourcing destinations (APNIC): a different story
- FTP measurements (Nalini Elkins): a different story

Examples 4-6: Destinations


- 1. PDM-FTP Toronto to Warsaw worked
- 2. PDM-FTP Toronto to Seattle worked
- 3. PDM-FTP Toronto to Mumbai worked
- 4. PDM-FTP Toronto to Melbourne worked
- 5. PDM-FTP Toronto to Frankfurt worked

rigure o — Do i option drop rate, October 2022.

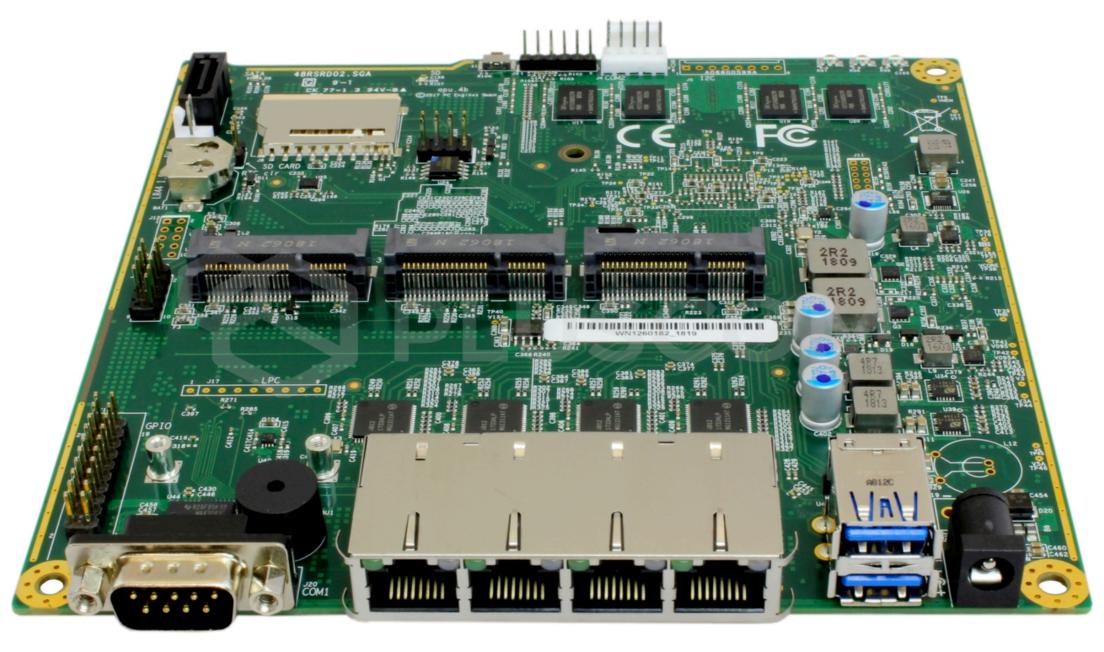

- RFC 7872: different destination infrastructure = different results
- Crowd sourcing destinations (APNIC): a different story
- FTP measurements (Nalini Elkins): a different story

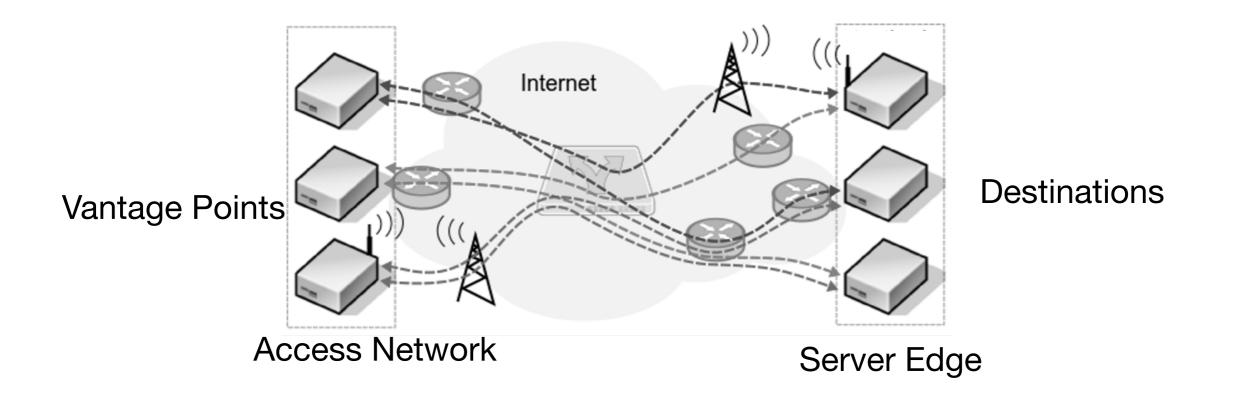
Example 7: Protocol Differences

EH Traversal can depend on the transport protocol carried

- TCP/UDP difference for EH traversal in edge networks
 - Lots of edge devices mess with TCP; could there be a link between those devices and traversal?

Recap


	Core	Access networks	Server Edge
Core	JAMES - traceroute N. Elkins - custom FTP measurements	Apnic - Custom measurements	UoA - Pathspider RFC 7872 - traceroute N. Elkins - custom cloud measurements
Access networks	UoA @RIPE Atlas - traceroute	N/A	Jen Linkova @RIPE Atlas - traceroute
Server Edge	N/A	N/A	N/A


• Wide-scale measurement can be difficult; our data works together!

What next?

- Traversal depends on many factors
 - How, where, to, and when you measure influences the final result
- End-to-end + path measurements + diverse targets, destinations and protocols mitigates limitations of each way to measure!
- Still several areas for exploration:
 - Example 7: Do network devices read EH?
 - Example 8: To what extent are forwarding decisions influenced by the presence of EH?

Could you provide a home for our measurement probe?

Questions?

- [1] https://www.rfc-editor.org/rfc/rfc7872
- [2] https://datatracker.ietf.org/meeting/108/materials/slides-108-6man-sessb-exploring-ipv6-extension-header-deployment-updates-2020-01
- [3] https://blog.apnic.net/2022/10/13/ipv6-extension-headers-revisited/
- [4] https://datatracker.ietf.org/doc/draft-vyncke-v6ops-james/