

ACME-Based Provisioning of IoT Devices

Michael Sweet Lakeside Robotics Corporation March 30, 2023

ACME-Based Provisioning of IoT Devices

- Current I-D:
 - https://datatracker.ietf.org/doc/draft-sweet-iot-acme/
- Abstract:
 - This document extends the Automatic Certificate Management Environment (ACME) [RFC8555] to provision X.509 certificates for local Internet of Things (IoT) devices that are accepted by existing web browsers and other software running on End User client devices.
- Goal is to eliminate scary browser security warnings when accessing embedded web servers

Typical Home Network

- Wi-Fi router/modem provided by ISP
 - Router implements DHCP and DNS (passthrough) services along with NAT and firewall functionality
 - Little to no outbound traffic filtering, may provide inbound port mapping and/or DMZ functionality for a single host
 - Embedded web interface for configuration/status monitoring, speed testing, etc.
- Network clients connect to network and obtain IP address(es), default gateway/route, DNS server, and local domain (usually the ISP's domain name) via DHCP
- Printers, cameras, appliances, etc. provisioned/connected by end users using WPS, captive portal AP web interface, vendor mobile apps, and/or device control panel

Typical Enterprise Network

- Managed routers, modems, etc.
 - Multiple subnets/VLANs
 - DHCP service for each subnet
 - DNS service for each site/organization
 - Outbound traffic is filtered/monitored, inbound traffic may be completely blocked or limited to isolated subsets/VLANs, interior traffic is often filtered/monitored
- Dedicated authorization, certificate, etc. services
- Network clients may need to be explicitly provisioned
- Printers, cameras, appliances, etc. are managed by IT department and/or third-party service

ACME

- Let's Encrypt has enabled the widespread use of HTTPS for public Internet web sites
 - Certificates for ".local" domain names cannot be issued
 - No way to do HTTP or DNS verification of local devices
- A local ACME server can be configured to issue certificates for ".local" domain names (as well as site domains) and can do HTTP and DNS verification with local devices
- Key issues:
 - ACME server discovery
 - Root certificate (trust anchor) for issued certificates
 - Security considerations for local ACME server, clients, and IoT devices

ACME Server Discovery

- Use DHCP option and/or DNS-SD with local DNS service
 - DHCP is both commonly used and trusted for local device access/connection
 - DHCP option provides simpler way for home networks
 - DNS-SD integrates with enterprise infrastructure
 - Cannot use mDNS for security reasons
- Nominally one ACME server per network
 - Failover/load-balancing is possible via DNS but from the network device perspective there is a single service

Network Root Certificate ("Trust Anchor")

- CA-signed root certificate will work with existing CA infrastructure/ support
- Self-signed root certificate requires some special handling
 - Trust On First Use (TOFU) when connecting to network
 - Only valid while connected to that network
 - Only valid for ".local" and local/sitespecific domain

Security Considerations

Local ACME server:

- Only issue certificates for approved domains ".local" and site-specific domain ("examplecorp.com")
- Protect root certificate and private key
- Support revocation/re-issue as needed
- Long-duration self-signed root cert or CA-signed root cert to minimize time-of-use/MITM attacks
- Short-duration issued certs to minimize exposure of compromised credentials

Security Considerations

Client devices:

- Limit trust of local root certificate to current network/domains
 - Challenge is network identification SSID isn't unique, MAC address should be but isn't authenticated, TLS negotiation establishes ownership of private key but anybody can make a self-signed certificate
- TOFU for "self-signed" root certificates

IoT devices:

- Protect ACME-issued certificate and generated private key
- Do not reuse private keys
- Ability to wipe/"factory reset" device

Level of Trust

- With self-signed root certificates, the level of trust is necessarily reduced
 - Browsers could choose to indicate this somehow, but based on prior research with "EV" certs that might not be useful/effective
 - Might also simply change the wording of the scary error message to something more like the SSH TOFU prompt
- Need to be comfortable with "less than perfect" security
 - Encrypting potentially sensitive communications is always a good thing
 - Providing a network-specific trust anchor provides better control and local validation of certificates and protects against MITM attacks
 - Using ACME allows the same certificate infrastructure to be used in both enterprise and home networks, which is especially important as more people have hybrid work scenarios