Anti-replay sequence number subspaces

draft-ponchon-ipsecme-anti-replay-subspaces

Mohsin Shaikh (presenter), Paul Ponchon, Pierre Pfister, Guillaume Solignac IETF 116 @ Yokohama

Quick Recap

- Proposal to use multiple sequence number subspaces as an alternative to creating multiple child SAs for multi-core performance
- Additionally support QoS and multi-path

Advantages of multiple sequence subspaces

- Some users require anti-replay and PFS for compliance
- No. of IKEv2 messages exchanged: Multiple sequence subspaces : 4 Multiple child SAs : 2 + (2 x no. of child SAs) IKEv2 touts fewer message exchanges as an advantage over IKEv1 [RFC7296 -Appendix A. Summary of Changes from IKEv1]
- Avoids repeating history. IKEv1 protocol allowed a single pair of selectors per CHILD_SA, while IKEv2 improved that by allowing multiple traffic selectors to be negotiated for one child SA. We are repeating the same IKEv1-like behaviour with multiple child SAs per core. [RFC7296 - Appendix A. Summary of Changes from IKEv1]
- Adding too many SAs may slow down per-packet SAD lookup [draft-ietf-ipsecme-multi-sa-performance-00]

Updates in draft-01 since IETF 115

 Increased the sequence number field in ESP header to 64-bits, the subspace ID to 16 bits (from 8 bits in previous draft) and reserve the top 16 bits to store subspace ID.

Security Parameters Index (SPI)		
Subspace ID (16 bits)		
Sequence number (64 bits)		
Subspace ID (16 bits)		
Optional IV (64 bits)		
Rest of ESP Payload		

Updates in draft-01 since IETF 115 (contd.)

- IKE negotiation contains a new "Anti-replay subspaces" transform to negotiate the number of subspaces required
- IPR disclosure from SSH Communications Security

Test Data

- Memory usage goes up with multiple child SAs (tested between 2 docker containers using strongSwan with 1 IKE SA).

ESP proposal	aes256gcm8	aes128ctr-sha2_256
0 tunnel	9,040 kB	8,908 kB
1000 tunnels	17,996 kB	19,228 kB
10,000 tunnels	90,360 kB	98,576 kB
100,000 tunnels	824,100 kB	891,568 kB

 Assuming a 64 packet window, the amount of increase in memory per SA is (8+8 bytes) X no. of sequence subspaces.

Should the working group work on this and adopt ?

