
JMAP for Migration and
Data Portability

IETF 116

https://datatracker.ietf.org/doc/draft-baum-jmap-portability

1

Motivation:

● Move existing user data between systems over generic API
○ e.g., due to DMA Article 6

● Give API spec to legacy systems which have no appropriate API
● Combine with other solutions for migration and portability-related problems

Migration and Data Portability Spec Overview

2

Migration and Data Portability Spec Overview (2)

RFC 8620 observations:

➕ feature-rich
➕ generic
➖ complex
➖ unclear how to implement it partially

-> high entry barrier and high requirements; bad for adoption

3

Migration and Data Portability Spec Overview (3)

1. “How to Quickstart JMAP”: Guidance on bare minimum for one-time migration
use for lower entry barrier
● Session Resource with constant values for a lot of use cases
● Focus on key objects, methods and properties for migration use-case

○ e.g., no /query for some use cases
○ no /copy or /changes methods

● No batching, no Push, …
2. Introduce simplified request scheme

➜ Even lower requirements
3. Extensions for further migration-related problems?

➜ Improve Portability solutions even further

4

Focus on key objects, methods and properties

● Document how to implement RFC8620 in a minimal way
● Define additional steps necessary for common data portability use cases:

○ data export (optionally with listing/paging)
○ data import
○ attachment support
○ recommended some “advanced” features of RFC8620 (e.g., Core/echo)

● Provide developers with a simple overview what needs to be implemented for
their use case

○ Overview table that could be used as a scope statement

5

6

Issue: JMAP Portability as an alternative to RFC8620?

Main issue from mailing list: Merely omitting certain features of RFC8620 is
forbidden.

New approach:

● Use constant values or error responses instead of simply omitting parts of
RFC 8620

Examples:

● state/sessionState = “”, downloadUrl = “”, accountId = “self”
● Core/echo -> reply with serverFail error
● /get -> reply with requestTooLarge error (maxObjectsInGet was 0)
● /set -> reply with accountReadOnly error (accountReadOnly was true)

7

8

Issue: JMAP Portability as an alternative to RFC8620? (2)

Constant values or error responses are not perfect:

● Only serverFail (“An unexpected or unknown error”) seems to fit for Core/echo, /query and
/copy.

● Similarly, reply with “invalidArguments” when certain properties are used (e.g., /query’s limit
property)

● downloadUrl == “” when no attachments are supported. However, it “MUST contain
variables”.

urn:ietf:params:jmap:core-essential-portability vs. urn:ietf:params:jmap:core :

● RFC 8620 might require some features that a lot of use cases do not. Is it flexible enough?
● Do we mind the higher complexity that comes with strictly following RFC8620?
● Discussion on the mailing list was in favour of urn:ietf:params:jmap:core

9

Sometimes a simple JSON with constant values is enough:

● a user login is tied to a single JMAP account
● access to shared data is not required
● capabilities, restrictions (e.g. maxMailboxesPerEmail) and URL properties

(e.g., downloadUrl) are the same for every user

Then:

● accountId = “self”
● username and state are empty string

Session Resource

10

Session Resource (2)
 "primaryAccounts": {
 "urn:ietf:params:jmap:<other-capability>": "self"
 },
 "username": "",
 "apiUrl": "<apiUrl>",
 "downloadUrl": "",
 "uploadUrl": "",
 "eventSourceUrl": "",
 "state": ""

 "capabilities": {
 "urn:ietf:params:jmap:core": {
 "maxSizeUpload": 0,
 "maxConcurrentUpload": 0,
 "maxSizeRequest": <maxSizeRequest>,
 "maxConcurrentRequests": <maxConcurrentRequests>,
 "maxCallsInRequest": 1,
 "maxObjectsInGet": 0,
 "maxObjectsInSet": 0,
 "collationAlgorithms": []
 },
 "urn:ietf:params:jmap:<other-capability>": {},
 ...
 },
 "accounts": {
 "self": {
 "name": "",
 "isPersonal": true,
 "isReadOnly": true,
 "accountCapabilities": {
 "urn:ietf:params:jmap:<other-capability>": {
 "<key>": <value>,
 ...
 },
 ...
 }
 }
 },

11

Simplified request scheme
{
 ...
 "capabilities": {

...,
"urn:ietf:params:jmap:core-simple": {}

 },
 "apiUrlSimple": "https://jmap.me/api

/?accountId=<account-id>&methodCall=<methodCall>&ids=<ids>"
}

● Request properties are inside the URI
● No need to implement processing

JSON payload in Request
● WIP: Essential profile needs to mature

first

Does introducing a new feature fit in the informational spec?

12

Extension: JMAP Debug
 "logs" : [

{
 "file" : "Logger.php",
 "level" : "info",
 "line" : 32,
 "message" : "Array Logger has been successfully initialized",
 "timestamp" : "2022-01-18T10:26:56+01:00"

},
{

 "file" : "ErrorHandler.php",
 "level" : "warning",
 "line" : 52,
 "message" : "fopen(bridge.php):
 failed to open stream: No such file or directory",
 "timestamp" : "2022-01-18T10:26:56+01:00"

},
...

],
 "methodResponses" : [

[
 "Core/echo",
 ...

● Supply log messages along-side the
usual data exchange instead of
sending through a different channel

● Example use case: a JMAP API
server running on a third-party
infrastructure

Does it fit in the spec?

13

Extension: JMAP Backend Info
 "capabilities": {

"urn:ietf:params:jmap:core:backendinfo": {
 "backend": "OpenXPort/Horde v1.0.0",
 "product": "Horde Webmailer v1.0.0",
 "environment": "PHP v5.5",
 "capabilityInfo": {
 "urn:ietf:params:jmap:sieve": {
 "backend": "Cyrus timsieved",
 "product": "Horde Ingo v1.0.0",
 "fileType": "SIEVE/HORDE"
 }
 }
 },
 …
 },

● Some server software does not
properly follow RFC8620

● Supporting such servers requires
identifying them by some means

● Typically hard-coded URI (error-prone)
● JMAP Backend Info provides clients

with less error prone way

Does it fit in the spec?

14

