Key Transparency: Problem Statement

Brendan McMillion IETF 116 / March 29, 2023

Problem

- E2EE service providers often have difficulty finding secure ways to distribute the long-term identity keys of end-users
- Users can sometimes manually verify the public key of each user they communicate with (but people rarely actually do this)
- Compromised key management can undermine any encryption

🖬 VZW Wi-Fi 🗢		3 PM		* 💷
	Verify Safe	ety Numb	er	
You have	e not mark as ve	ed +1 rified.	-	
	回激》 State State State State Tap t	scan		
3529	2 37554 7 72831 4 34110	95945	88302	
encryption w	to verify the s ith +1 with the num	, comp	are the numb	
Alternatively, y	them to sca	n your code		or ask
	Learn	More		
	✓ Mark a	as Verifie	d	

Solution: Key Transparency

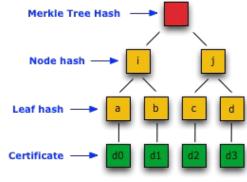
From bofreq:

"Key Transparency (KT) is a safe, publicly-auditable way to distribute cryptographically-sensitive data like public keys."

Works like a key-value database with two main, cryptographically-assured properties:

- 1. Alice's key as seen by Alice = Alice's key as seen by everyone else
- 2. Alice's key today = Alice's key yesterday + Anything new

Current approach: Users manually verify that a public key belongs to a specific, real life person


Key Transparency approach: A user's device monitors their account for unexpected changes that could be impersonation

Relation to other IETF efforts

Many WGs rely on "transparency logs" in their work:

- SCITT (Supply Chain Integrity)
- TIGRESS (Digital Credentials)
- TRANS (Certificate Transparency)

Built as fully public, append-only logs:

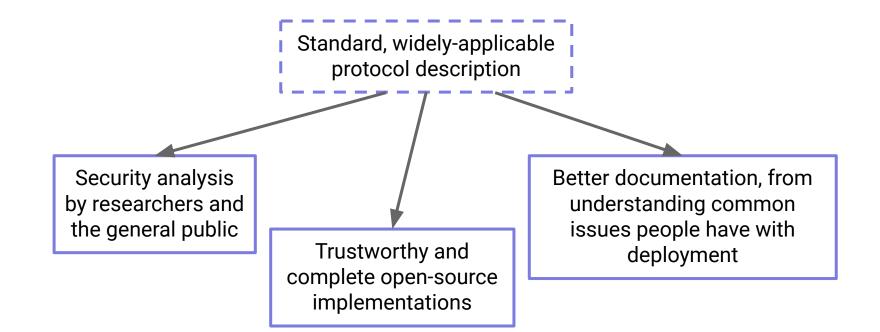
KT builds on top of append-only
logs to provide:

- Efficient search / users don't need to download the entire log
- Better privacy properties

Much more appropriate for E2EE!

Merkle Tree: Each leaf contains the hash of some data. Every other node contains the hash of its children. This all sounds great but why are you telling me?

Key Transparency has relatively little serious adoption – why?


Deploying KT is incredibly difficult:

- Very technically complicated
- Large amount of academic literature
- No guidance on what the "right" choices in the design space are
- Few existing implementations, and those that exist often leave important aspects unresolved
- No trusted, one-size-fits-all protocols or implementations

Even very dedicated implementers get overwhelmed and give up*

* Or their manager tells them to stop

Ideal End Goal

Actually Getting There

Understand the state of what's been deployed and what's possible Align a community on a set of common, achievable requirements Write a protocol that achieves those goals

Questions? Thoughts?