
Key Transparency:
Problem Statement

Brendan McMillion
IETF 116 / March 29, 2023



Problem
- E2EE service providers often have difficulty 

finding secure ways to distribute the 
long-term identity keys of end-users

- Users can sometimes manually verify the public 
key of each user they communicate with (but 
people rarely actually do this)

- Compromised key management can undermine any 
encryption



Solution: Key Transparency
From bofreq:

“Key Transparency (KT) is a safe, publicly-auditable way to distribute cryptographically-sensitive data like public keys.”

Works like a key-value database with two main, cryptographically-assured properties:

1. Alice’s key as seen by Alice = Alice’s key as seen by everyone else
2. Alice’s key today = Alice’s key yesterday + Anything new

Current approach:
Users manually verify that 
a public key belongs to a 
specific, real life person

Key Transparency approach:
A user’s device monitors their 
account for unexpected changes 
that could be impersonation



Relation to other IETF efforts
Many WGs rely on “transparency logs” 
in their work:

- SCITT (Supply Chain Integrity)
- TIGRESS (Digital Credentials)
- TRANS (Certificate Transparency)

Built as fully public, append-only 
logs:

KT builds on top of append-only 
logs to provide:

- Efficient search / users don’t need to 
download the entire log

- Better privacy properties

Much more appropriate for E2EE!

Merkle Tree: Each leaf contains 
the hash of some data. Every 
other node contains the hash of 
its children.



This all sounds 
great but why 
are you telling 
me?



Key Transparency has relatively little 
serious adoption – why?
Deploying KT is incredibly difficult:

- Very technically complicated
- Large amount of academic literature
- No guidance on what the “right” choices in the 

design space are
- Few existing implementations, and those that exist 

often leave important aspects unresolved
- No trusted, one-size-fits-all protocols or 

implementations

Even very dedicated 
implementers get 
overwhelmed and give up*

* Or their manager tells them to stop



Ideal End Goal

Standard, widely-applicable 
protocol description

Security analysis 
by researchers and 
the general public

Better documentation, from 
understanding common 
issues people have with 

deploymentTrustworthy and 
complete open-source 

implementations



Actually Getting There

Understand the state of 
what’s been deployed 
and what’s possible

Align a community on a 
set of common, 

achievable requirements

Write a protocol 
that achieves 
those goals



Questions?
Thoughts?


