Use of KYBER in the Cryptographic Message Syntax (CMS)

IETF LAMPS 116

draft-ietf-lamps-cms-kyber

Julien Prat (CryptoNext Security)
Mike Ounsworth (Entrust)

MARCH 2023
Changes between draft-ietf-lamps-kyber-00 and draft-ietf-lamps-cms-kyber-00

Editorial:
• Title was updated to fit with the group naming (cms was missing in the title!)

Use in CMS:
• RecipientInfo Conventions: Use of OtherRecipientInfo using the KEMRecipientInfo structure (draft-ietf-lamps-cms-kemri) to communicate algorithm info.
• Certificate Conventions: No update
• SMIME Capabilities Attribute Conventions: No update

Algorithm limitations:
• Algorithms to be used in KEM-TRANS are limited to Kyber

<table>
<thead>
<tr>
<th>Security Level</th>
<th>KEM</th>
<th>KDF</th>
<th>WRAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 bits</td>
<td>KYBER512</td>
<td>HKDF-SHA256</td>
<td>AES128-WRAP</td>
</tr>
<tr>
<td>192 bits</td>
<td>KYBER768</td>
<td>HKDF-SHA384</td>
<td>AES192-WRAP</td>
</tr>
<tr>
<td>256 bits</td>
<td>KYBER1024</td>
<td>HKDF-SHA512 or NULL</td>
<td>AES256-WRAP</td>
</tr>
</tbody>
</table>
Open Points

- New OIDs to be defined:
 - id-kem-trans (KEM-TRANS mechanism)
 - id-kyber512, id-kyber768, id-kyber1024 (KYBER algorithms)
 - Limit

Next Steps:
- Use in CMS: details to be given on how to use KEMRecipientInfo with Kyber
- ASN1 module to be updated
Thank you!
Back Up Slides
RFC Purpose:
Define how to use Kyber within the Cryptographic Message Syntax (CMS)

CMS Context:
One of the typical use case of the CMS Envelopped-Data Content is to:
1. randomly generate a CEK,
2. encrypt the data with a symmetric algorithm using this CEK
3. individually send the CEK to one or more recipients protected by asymmetric cryptography in a RecipientInfo object.

Requirements:
Need to define a new Key Transport mechanism fulfilling the following requirements:
• the Key Transport Mechanism SHALL be secure against quantum computers.
• the Key Transport Mechanism SHALL be able to take the Content-Encryption Key (CEK) as input.

=> Definition of the KEM-TRANS mechanism
A key encapsulation mechanism (KEM) is an asymmetric cryptographic algorithm allowing secret sharing between two entities.

KEM consisting of 3 functions:
• Key generation `KeyGen()`:
 • Returns a public key and a private key (PK, SK)
• Encapsulation `Encaps`(PK):
 • Takes as input the public key
 • Returns a ciphertext CT and a shared secret SS
• Decapsulation `Decaps`(SK, CT):
 • Takes as input the private key and the ciphertext
 • Returns the shared secret SS

=> Impossible to encrypt a fixed CEK with KEM
A key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value using a pseudorandom function.

KDF consists of 1 function:
- Key Derivation `Derive(SS, KEK_LEN)`:
 - Takes as input a shared secret SS and the length of the output secret key KEK_LEN
 - Returns a secret key KEK
A wrapping algorithm (WRAP) is a symmetric cryptographic algorithm protecting data in confidentiality and in integrity.

WRAP consists of 2 functions:
- Wrapping \texttt{Wrap}(KEK, K):
 - Takes as input a wrapping key KEK and a plaintext key K
 - Returns a wrapped key WK
- Unwrapping \texttt{Unwrap}(KEK, WK):
 - Takes as input a wrapping key KEK and a wrapped key WK
 - Returns the plaintext key K
KEM-TRANS MECHANISM - DESCRIPTION

Assumptions:
Sender has been provided with:
• \textit{recipPubKey}: the recipient's public key for KEM.
• \textit{K}: the keying data to be transported, length is compatible with the chosen WRAP algorithm.

Sender's operations:
1. \((SS, CT) = \text{KEM.encaps}(\text{recipPubKey})\)
2. \(KEK = \text{KDF.derive}(SS, \text{kekLen})\)
3. \(WK = \text{WRAP.wrap}(KEK, K)\)
4. \(EK = (WK || CT)\)

Recipient's operations:
1. \((WK || CT) = EK\)
2. \(SS = \text{KEM.decaps}(\text{recipPrivKey}, CT)\)
3. \(KEK = \text{KDF.derive}(SS, \text{kekLen})\)
4. \(K = \text{WRAP.Unwrap}(KEK, WK)\)

=> KEM-TRANS mechanism allows the transport of any keying data, including CMS CEK
=> KEM-TRANS mechanism can be instantiated with any KEM algorithm, including a Quantum-Safe KEM, making the KEM-TRANS mechanism Quantum-Safe
RecipientInfo Conventions:
• RecipientInfo Type MUST be OtherRecipientInfo using the KEMRecipientInfo

Certificate Conventions:
• Key Usage Extension MUST contain only the value \textit{keyEncipherment}
• Subject Public Key Info MUST be set to \texttt{id-alg-xxx-kem} OID (KEM algorithm)

SMIME Capabilities Attribute Conventions:
SMIMECapability = {
• CapabilityID = \texttt{id-kem-trans}
• Parameters = GenericKemTransParameters
}

GenericKemTransParameters = {
• kem KeyEncapsulationMechanism
• kdf KeyDerivationFunction
• wrap KeyWrappingMechanism
}
THE NEW GENERATION OF QUANTUM RESISTANT AND SOVEREIGN CRYPTOGRAPHY

Thank you!