Efficient continuous latency
monitoring with eBPF

Simon Sundberg, Anna Brunstrom, Simone Ferlin-Reiter,
Toke Hgiland-Jgrgensen & Jesper Dangaard Brouer

B KAU.SE/CS

1 Simon Sundberg
2023-03-29

Network latency matters

* Latency impacts QoE of interactive applications
— Current applications: video conferencing, gaming, web browsing
— Future applications: AR/VR, tactile Internet, autonomous vehicles

* Need tools to continuously monitor latency
— Latency can rapidly change on a network
— Latency within a flow can fluctuate (jitter)
— To solve latency issues we must first monitor the latency

Simon Sundberg * B KAU.SE/CS
2023-03-29

Current solutions for latency monitoring

* Active monitoring
— Ex. Ping, IRTT, pingmesh, RIPE Atlas
— Great for controlled measurements
— Don't capture latency of actual application traffic

* Passive monitoring
— Ex. Wireshark/tshark, PPing!
— Captures latency of real application traffic
— High overhead from packet capturing

thttps://github.com/pollere/pping

Simon Sundberg * B KAU.SE/CS
2023-03-29

https://github.com/pollere/pping
https://github.com/pollere/pping
https://github.com/pollere/pping
https://github.com/pollere/pping

How Passive Ping works

* Uses TCP timestamps _
. Timestamps
— Matches TSval and TSecr A Capture Point..»r~———~ B

— Can be extended to other ;

B - A, 123) t
identifiers '

* Captures RTT between capture
point and end host

Simon Sundberg KAU.SE/CS
2023-03-29

Our solution - an evolved Passive Ping

Use eBPF to implement passive monitoring in kernel space

[J
— Direct access to packet buffer, no cloning needed
— Only send computed RTTs to user space (not entire packets)
PPing ePPing
* eBPF allows attaching custom -
M moni olr\;re1 Reperting
programs to hooks in the kernel o -
. User space I" User space
— No need to recomp”e kernel o e I
o©| Kernel space 2| Kernel space
8 i
(=)\ 4 o f—l_
Network €T | Packet [€ Network} N Passive Network
packets > cloning > stack monitoring N stack
N ’ N eBPF

KAU.SE/CS

Simon Sundberg
2023-03-29

Performance results i
Capture

/ point
Y .
Setup' I; 100 GbE ¢ 100 GbE g

Sender Middlebox Receiver

* When the end hosts are bottlenecks:

60

100 -
= =
g w801
Q —
O 40 2
60 -
: s
o Y 40 A
3 20 - @
c o
~ o 20 -
o
0- . 0-
baseline PPing ePPing baseline PPing ePPing PPing ePPing

Simon Sundberg KAU.SE/CS
2023-03-29

When running on bottleneck

* Limit middlebox to single core

— Core is 100% utilized
— Overhead reduces forwarding rate

PPing misses most packets

More flows = more RTTs

— ePPing starts to struggle due to
reporting >100k RTTs/s

Simon Sundberg
2023-03-29

Packet rate (Mpps)

2.0 — el R °
1.5 - e
1.0 1 = - _
i gl —— baseline
=== PPing-fw
OS5 PPing-proc
Ry °... —— ePPing
O 0 T C e ?. ?
1 10 100 1000
No. flows

B KAU.SE/CS

Further reducing overhead

Packet rate (Mpps)

In-kernel sampling and aggregation greatly reduces overhead

Reporting individual RTTs

sample limit (ms)

1 10 100 1000

No. flows

Simon Sundberg
2023-03-29

Packet rate (Mpps)

Aggregated RTT reports

——

1 10 100 1000

No. flows

KAU.SE/CS

Conclusion

* Summary:
— Implemented continuous passive latency monitoring in kernel using eBPF

— Can process packets at over 10x the rate of PPing
© Over 1 Mpps / 10 Gbps on a single core

— In-kernel sampling and aggregation can further reduce overhead

* Future work:
— Improve aggregation of RTTs

— Evaluate ePPing from an ISP vantage point
— Add support for additional protocols (QUIC, DNS)

Simon Sundberg * B KAU.SE/CS
2023-03-29

Try it yourself!

* ePPingis open source
— https://github.com/xdp-project/bpf-examples/tree/master/pping

* Data, script and instructions to repeat experiments
— https://doi.org/10.5281/zenodo.7555409

10 Simon Sundberg * B KAU.SE/CS
2023-03-29

https://github.com/xdp-project/bpf-examples/tree/master/pping
https://doi.org/10.5281/zenodo.7555409

Thank you for your time!

Questions?
simon.sundberg@kau.se

1 Simon Sundberg :: KAU.SE/CS

2023-03-29

The problem with passive monitoring

* Packet capturing has high overhead 1.4 —%— ';‘;iirgface “T- Fraction]|

N
w

=
N
1

— Can’t keep up with high packet rates

=
o
1
N
o

=
(6]

Fraction (%)

* Consequences
— Miss potentially valuable samples

o
o

Packet rate (Mpps)
o
0
=
o

o
I

— Algorithms don’t function properly .

0.0 T T —- 0
10 100 1000

1
* What if we didn’t need to capture the packets? No. flows
— With eBPF we can peek at packets in the kernel

12 Simon Sundberg i B KAU.SE/CS
2023-03-29

What is eBPF?

* Runtime environment in kernel * Use cases

— Attach custom programs to — Observability, Security, Networking
various hooks at runtime

[Process }

ode -

* Workflow w0 T sendnsg() | Arecvmsg()
— Compile to eBPF bytecode ;pa" [sysaall

. > eBPF
— Load into kernel i

epe O ﬁ'eBPF Verifier Sockets
O Verified = GC" el [)
= = approve (TCP/IP]
— Program
o JITted B | &J : PIB-:;ram [Network Device |

ﬁ’e.aPF JIT Compiler }
Figure from https://ebpf.io/what-is-ebpf (CC-BY 4.0)

— Attach to hook

13 Simon Sundberg . B KAU.SE/CS
2023-03-29

https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf

ePPing design

6. Print RTT] Periodically delete old flows and timestamps
Userspace program J

User space

Kernel space

Perf-buffer
events
BPF program](Update(<flow>, state)

5. Push RTT (ingress + egress)
g

3. ts = Lookup(<reverse-flow, reply-id>)

Hash-map
acket TS

2. Add(<flow, id>, now)

Hash-map
flow state

1. Parse packet
4. RTT =now - ts

14 Simon Sundberg | § KAU.SE/CS
2023-03-29

Limitations
* Relies on TCP timestamps

— Not available in all TCP traffic

* Delayed ACKs may inflate the RTTs
— Impacts the TCP stack, but not necessarily applications above

* Evaluation mainly based on bulk flows
— Plan to evaluate from ISP vantage point

15 Simon Sundberg * B KAU.SE/CS
2023-03-29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

