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Network latency matters

* Latency impacts QoE of interactive applications
— Current applications: video conferencing, gaming, web browsing
— Future applications: AR/VR, tactile Internet, autonomous vehicles

* Need tools to continuously monitor latency
— Latency can rapidly change on a network
— Latency within a flow can fluctuate (jitter)
— To solve latency issues we must first monitor the latency
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Current solutions for latency monitoring

* Active monitoring
— Ex. Ping, IRTT, pingmesh, RIPE Atlas
— Great for controlled measurements
— Don't capture latency of actual application traffic

* Passive monitoring
— Ex. Wireshark/tshark, PPing!
— Captures latency of real application traffic
— High overhead from packet capturing

thttps://github.com/pollere/pping
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How Passive Ping works

* Uses TCP timestamps _
. Timestamps
— Matches TSval and TSecr A Capture Point..»r~———~ B

— Can be extended to other ;
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* Captures RTT between capture
point and end host
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Our solution - an evolved Passive Ping

Use eBPF to implement passive monitoring in kernel space

[ J
— Direct access to packet buffer, no cloning needed
— Only send computed RTTs to user space (not entire packets)
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Performance results i
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When running on bottleneck

* Limit middlebox to single core

— Core is 100% utilized
— Overhead reduces forwarding rate

PPing misses most packets

More flows = more RTTs

— ePPing starts to struggle due to
reporting >100k RTTs/s
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Further reducing overhead

Packet rate (Mpps)

In-kernel sampling and aggregation greatly reduces overhead

Reporting individual RTTs

sample limit (ms)
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Conclusion

* Summary:
— Implemented continuous passive latency monitoring in kernel using eBPF

— Can process packets at over 10x the rate of PPing
© Over 1 Mpps / 10 Gbps on a single core

— In-kernel sampling and aggregation can further reduce overhead

* Future work:
— Improve aggregation of RTTs

— Evaluate ePPing from an ISP vantage point
— Add support for additional protocols (QUIC, DNS)
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Try it yourself!

* ePPingis open source
— https://github.com/xdp-project/bpf-examples/tree/master/pping

* Data, script and instructions to repeat experiments
— https://doi.org/10.5281/zenodo.7555409
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Thank you for your time!

Questions?
simon.sundberg@kau.se
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The problem with passive monitoring

* Packet capturing has high overhead 1.4 —%— ';‘;iirgface “T- Fraction]|
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* Consequences
— Miss potentially valuable samples
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— Algorithms don’t function properly .
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* What if we didn’t need to capture the packets? No. flows
— With eBPF we can peek at packets in the kernel
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What is eBPF?

* Runtime environment in kernel * Use cases

— Attach custom programs to — Observability, Security, Networking
various hooks at runtime

[ Process }

ode -

*  Workflow w0 T sendnsg() | Arecvmsg()
— Compile to eBPF bytecode ;pa" [ sysaall

. > eBPF
— Load into kernel i
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Figure from https://ebpf.io/what-is-ebpf (CC-BY 4.0)

— Attach to hook
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ePPing design

6. Print RTT ] Periodically delete old flows and timestamps
Userspace program J

User space

Kernel space

Perf-buffer
events
BPF program ]( Update(<flow>, state)

5. Push RTT (ingress + egress)
g

3. ts = Lookup(<reverse-flow, reply-id>)

Hash-map
acket TS

2. Add(<flow, id>, now)

Hash-map
flow state

1. Parse packet
4. RTT =now - ts

14 Simon Sundberg | §  KAU.SE/CS
2023-03-29




Limitations
* Relies on TCP timestamps

— Not available in all TCP traffic

* Delayed ACKs may inflate the RTTs
— Impacts the TCP stack, but not necessarily applications above

* Evaluation mainly based on bulk flows
— Plan to evaluate from ISP vantage point
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