
1 KAU.SE/CSSimon Sundberg
2023-03-29

Simon Sundberg, Anna Brunström, Simone Ferlin-Reiter,
Toke Høiland-Jørgensen & Jesper Dangaard Brouer

Efficient continuous latency
monitoring with eBPF

2 KAU.SE/CSSimon Sundberg
2023-03-29

Network latency matters
• Latency impacts QoE of interactive applications

– Current applications: video conferencing, gaming, web browsing
– Future applications: AR/VR, tactile Internet, autonomous vehicles

• Need tools to continuously monitor latency
– Latency can rapidly change on a network
– Latency within a flow can fluctuate (jitter)
– To solve latency issues we must first monitor the latency

3 KAU.SE/CSSimon Sundberg
2023-03-29

Current solutions for latency monitoring
• Active monitoring

– Ex. Ping, IRTT, pingmesh, RIPE Atlas
– Great for controlled measurements
– Don’t capture latency of actual application traffic

• Passive monitoring
– Ex. Wireshark/tshark, PPing1

– Captures latency of real application traffic
– High overhead from packet capturing

1https://github.com/pollere/pping

https://github.com/pollere/pping
https://github.com/pollere/pping
https://github.com/pollere/pping
https://github.com/pollere/pping

4 KAU.SE/CSSimon Sundberg
2023-03-29

How Passive Ping works
• Uses TCP timestamps

– Matches TSval and TSecr
– Can be extended to other

identifiers

• Captures RTT between capture
point and end host

5 KAU.SE/CSSimon Sundberg
2023-03-29

Our solution – an evolved Passive Ping
• Use eBPF to implement passive monitoring in kernel space

– Direct access to packet buffer, no cloning needed
– Only send computed RTTs to user space (not entire packets)

• eBPF allows attaching custom
programs to hooks in the kernel
– No need to recompile kernel

6 KAU.SE/CSSimon Sundberg
2023-03-29

Performance results
• Setup:

• When the end hosts are bottlenecks:

7 KAU.SE/CSSimon Sundberg
2023-03-29

When running on bottleneck
• Limit middlebox to single core

– Core is 100% utilized
– Overhead reduces forwarding rate

• PPing misses most packets

• More flows → more RTTs
– ePPing starts to struggle due to

reporting >100k RTTs/s

8 KAU.SE/CSSimon Sundberg
2023-03-29

Further reducing overhead
• In-kernel sampling and aggregation greatly reduces overhead

Reporting individual RTTs Aggregated RTT reports

9 KAU.SE/CSSimon Sundberg
2023-03-29

Conclusion
• Summary:

– Implemented continuous passive latency monitoring in kernel using eBPF
– Can process packets at over 10x the rate of PPing

○ Over 1 Mpps / 10 Gbps on a single core
– In-kernel sampling and aggregation can further reduce overhead

• Future work:
– Improve aggregation of RTTs
– Evaluate ePPing from an ISP vantage point
– Add support for additional protocols (QUIC, DNS)

10 KAU.SE/CSSimon Sundberg
2023-03-29

Try it yourself!
• ePPing is open source

– https://github.com/xdp-project/bpf-examples/tree/master/pping

• Data, script and instructions to repeat experiments
– https://doi.org/10.5281/zenodo.7555409

https://github.com/xdp-project/bpf-examples/tree/master/pping
https://doi.org/10.5281/zenodo.7555409

11 KAU.SE/CSSimon Sundberg
2023-03-29

Thank you for your time!
Questions?

simon.sundberg@kau.se

12 KAU.SE/CSSimon Sundberg
2023-03-29

The problem with passive monitoring
• Packet capturing has high overhead

– Can’t keep up with high packet rates

• Consequences
– Miss potentially valuable samples
– Algorithms don’t function properly

• What if we didn’t need to capture the packets?
– With eBPF we can peek at packets in the kernel

13 KAU.SE/CSSimon Sundberg
2023-03-29

What is eBPF?
• Runtime environment in kernel

– Attach custom programs to
various hooks at runtime

• Workflow
– Compile to eBPF bytecode
– Load into kernel

○ Verified
○ JITted

– Attach to hook Figure from https://ebpf.io/what-is-ebpf (CC-BY 4.0)

• Use cases
– Observability, Security, Networking

https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf

14 KAU.SE/CSSimon Sundberg
2023-03-29

ePPing design

15 KAU.SE/CSSimon Sundberg
2023-03-29

Limitations
• Relies on TCP timestamps

– Not available in all TCP traffic

• Delayed ACKs may inflate the RTTs
– Impacts the TCP stack, but not necessarily applications above

• Evaluation mainly based on bulk flows
– Plan to evaluate from ISP vantage point

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

