
MIMI Transport Protocol 
(MTP)

Jonathan Rosenberg

Cullen Jennings

Suhas Nandakumar



Strawman Decisions in this Draft

• Single provider owns the group chat

• Server-to-Server only

• Messages pulled from guest provider

• Sync on a per group chat basis

• Sync uses long poll (no one loves this) 

• Properties vs. Messages

• OOB Connection Authorization for anti-spam



Properties vs. Messages

Property

Something for which the only thing
that matters, is its current value.

Messages

Content shared in the group, where I 
will want to see them in time order. 

This is the “stuff” in the content 
draft

• Group Name
• Topic
• isModerated
• isReadOnly

• Text
• Reaction
• Link
• Image



Owning Provider Guest Provider

User A User B

Out of Band Comms (SMS, Email, etc)

MIMI REST

MIMI Sync (long poll)

Scope of Protocol



MTP Sync Model

Owning Provider Guest Provider

User A User B

1

Guest provider learns of 
new group chat that its 
user is in. In current I-D 
is via OOB technique, 
others can be added.

Guest provider 
maintains list of foreign 
groups a user is in.



MTP Sync Model

Owning Provider Guest Provider

User A User B

Guest provider uses 
REST API to fetch 
properties. Does this to 
establish initial/current 
view on properties for 
the group. 

2



MTP Sync Model

Owning Provider Guest Provider

User A User B

Guest provider 
subscribes to changes by 
asking for all events from 
current time onwards.

3



MTP Sync Model

Owning Provider Guest Provider

User A User B

Sequence of events.

Each event has time and 
type. 

Events indicate:
• New message
• Change in property

4



MTP Sync Model: Recovery

Owning Provider Guest Provider

User A User B

Last event: T2



MTP Sync Model: Recovery

Owning Provider Guest Provider

User A User B

Give me everything since 
T2

All events since T2



MTP Cloud Scale Model

Owning
Server1

Owning
Server2

Owning
Server3

HTTP
LB

Guest
Server1

Guest
Server1

Guest
Server1

Sub Group1

Sub Group2

Sub Group3

Sub Group4

Sub Group5

Sub Group1

Subscriber side sharded 
across servers by 
subscription ID

No problem if multiple
subscriptions for same
group – de-duped via 
message ID uniqueness

Subscribed side load balanced using existing HTTP LB
Fine grained subscriptions enable easy distribution of work
Subscription state bound to connection state – eliminates need for subscription DB


