Network Dataset Quality Problem

Katarzyna Wasielewska

University of Applied Sciences in Elblag, Poland

IETF 116, NMRG, Mar 2023

Motivation

- The Network Management area needs innovative solutions
- Expansion of Machine Learning
- Challenge of creating an ML model that works in production (algorithms, GIGO)
- Lack of the high quality datasets
- Model quality rather than the dataset quality
- High quality data is the cornerstone for evidence-based decision making
- Assessing the quality of the network dataset is an overlooked area

Dataset quality – what does it mean?

A dataset is said to be of high quality if it meets the requirements for its intended use

- Validity
- Accuracy
- Consistency
- Integrity
- Precision
- Correctness
- Uniqueness
- Reliability
- Completeness
- Representativeness
- Timeliness
- •

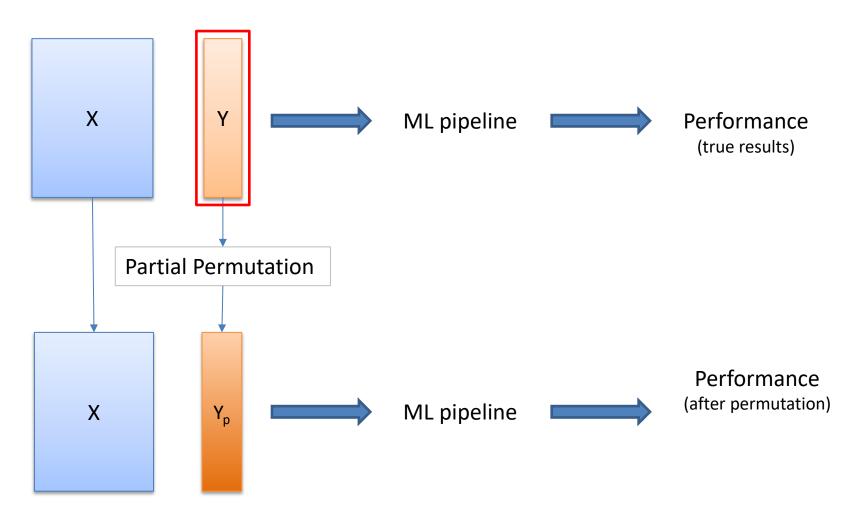
...

- Errors (technical, human)
- Invalid data
- Types, formats
- Missing values
- Noisy labels
- Class overlapping
- Data homogeneity
- Outliers
- Duplicates
- Feature correlation
- Imbalanced datasets
- Curse of dimensionality

• ..

Approaches: entropy based methods, metamorphic testing, crowdsourcing, ...

PerQoDA - Dataset Quality Assesment with Permutation Testing



Camacho J., Wasielewska K. (2022), Dataset Quality Assessment in Autonomous Networks with Permutation Testing, NOMS IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, doi: 10.1109/NOMS54207.2022.9789767

Wasielewska, K., Soukup, D., Čejka, T., Camacho, J. (2023), **Evaluation of the Limit of Detection in Network Dataset Quality Assessment with PerQoDA**. In: *et al.* Machine Learning and Principles and Practice of Knowledge Discovery in Databases. *ECML PKDD 2022*. Communications in Computer and Information Science, vol 1753. Springer. doi: 10.1007/978-3-031-23633-4_13

The research was part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 893146, and Agencia Estatal de Investigación in Spain, grant No PID2020-113462RB-I00, and by the Ministry of Interior of the Czech Republic under grant number VJ02010024

PerQoDA - Methodology

1. Train a pool of classifiers using the original dataset (X, Y)

- 2. Evaluate each model using the selected performance metric
- 3. Permute selected percentage of the labels Y to get new labels Yp and new dataset (X, Yp)
- 4. Train the pool of classifiers on the dataset (X, Yp)
- 5. Evaluate each model with the same performance metric
- 6. For Yp and Y, compute the correlation coefficient
- 7. Repeat the steps 3 through 6, P times, where P is the number of permutations
- 8. Calculate p-value
- 9. Repeat the steps 7 and 8 for each value of percentage (for example for 50%, 25%, 10%, 5%, 1% labels)

PerQoDA

• Let's define a null hypothesis:

 $XY = XY_{p}$

• For each (M, multiple M*), p-values are calculated as follows

$$p-value = \frac{\text{No. of } (M * \ge M) + 1}{\text{Total no. of } M * + 1}$$

where M refers to the performance metric value computed from the original dataset and M^{*} stands for the performance after a certain number of permutations

- If p-value $\leq \alpha$, there is evidence of statistical significance in M
- If p-value > α , it means that null hypothesis cannot be rejected

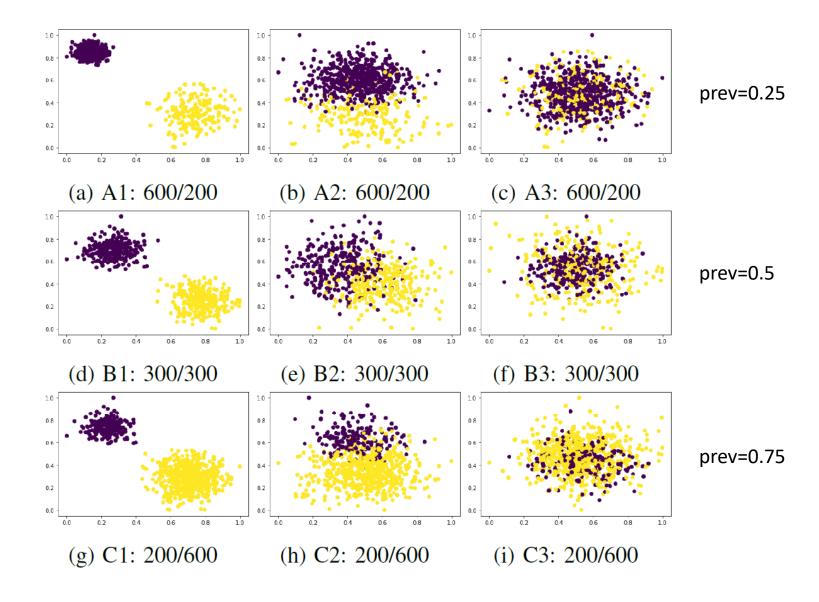
Experiments

- Classifiers: KNN, SVM, Decision Tree, Random Forest, GNB, AdaBoost, DT, RF, MLP
- Metrics: Recall, F1, Balanced Accuracy, ...
- Subsets of labels (percentages): 50%, 25%, 10%, 5%, 1%
- 100 permutations
- α=0.05

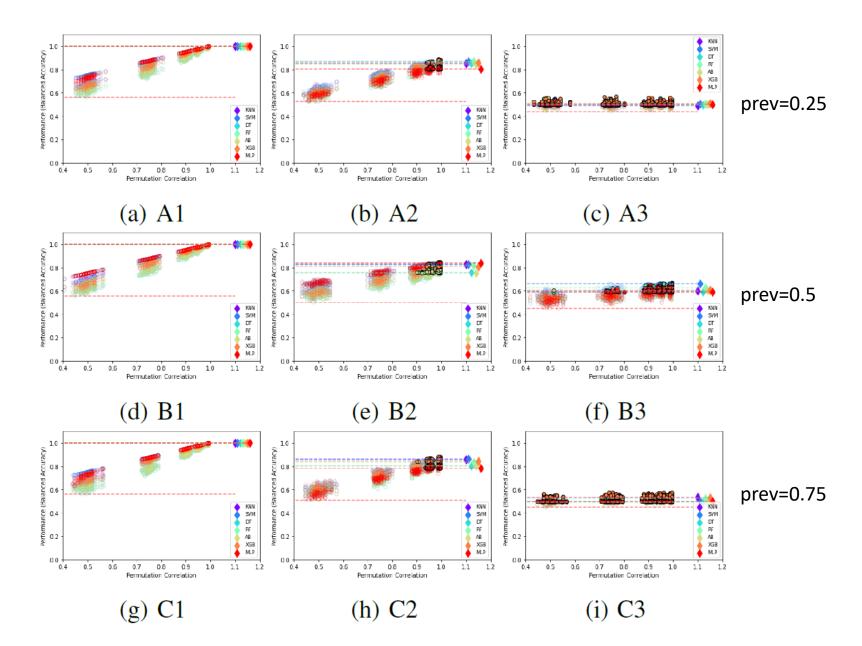
Interpretation:

- If all models perform bad (non-significance) => dataset is bad
- If some models perform good (significance) => dataset is good

Balanced and imbalanced toy datasets



Results for Balanced Accuracy (1/2)



Results for Balanced Accuracy (2/2)

	50%	25%	10%	5%	1%		50%	25%	10%	5%	1%		50%	25%	10%	5 %	1%
KNN	0.009901	0.009901	0.009901	0.009901	0.009901	KNN	0.009901	0.009901	0.009901	0.158416	0.663366	KNN	0.732673	0.673267	0.732673	0.772277	0.821782
SVM	0.009901	0.009901	0.009901	0.009901	0.009901	SVM	0.009901	0.009901	0.009901	0.009901	0.455446	SVM	0.168317	0.297030	0.504950	0.633663	0.772277
DT	0.009901	0.009901	0.009901	0.009901	0.009901	DT	0.009901	0.009901	0.009901	0.009901	0.168317	DT	0.534653	0.485149	0.475248	0.524752	0.495050
RF	0.009901	0.009901	0.009901	0.009901	0.009901	RF	0.009901	0.009901	0.009901	0.039604	0.297030	RF	0.475248	0.376238	0.415842	0.425743	0.485149
AB	0.009901	0.009901	0.009901	0.009901	0.009901	AB	0.009901	0.009901	0.009901	0.039604	0.306931	AB	0.465347	0.376238	0.396040	0.386139	0.386139
XGB	0.009901	0.009901	0.009901	0.009901	0.009901	XGB	0.009901	0.009901	0.009901	0.079208	0.564356	XGB	0.346535	0.336634	0.277228	0.376238	0.346535
MLP	0.009901	0.009901	0.009901	0.009901	0.009901	MLP	0.009901	0.009901	0.009901	0.326733	0.851485	MLP	1.000000	1.000000	1.000000	1.000000	1.000000

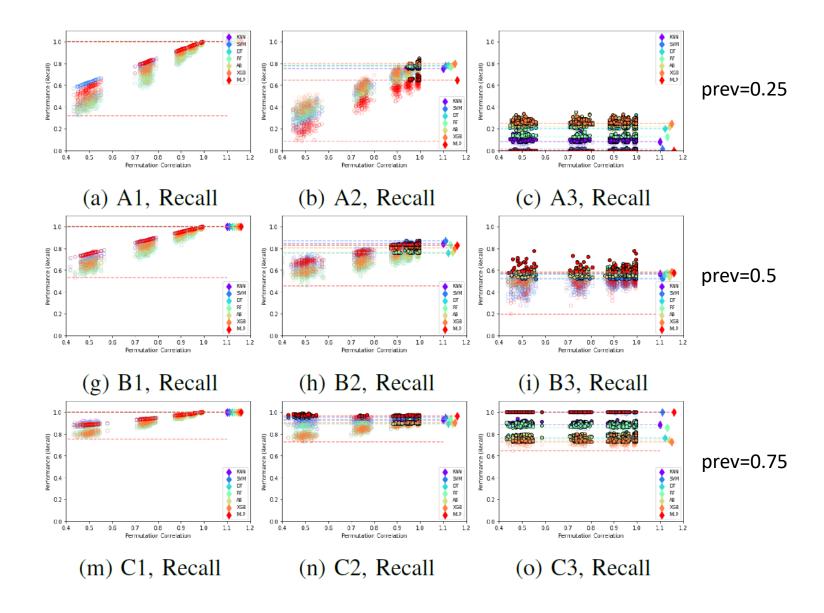
		(a)	A1					(b)) A2					(c)	A3	I	
	50%	25%	10%	5%	1%		50%	25%	10%	5%	1%		50%	25%	10%	5%	1%
KNN	0.009901	0.009901	0.009901	0.009901	0.009901	KNN	0.009901	0.009901	0.009901	0.009901	0.138614	KNN	0.009901	0.049505	0.267327	0.475248	0.386139
SVM	0.009901	0.009901	0.009901	0.009901	0.009901	SVM	0.009901	0.009901	0.009901	0.069307	0.663366	SVM	0.009901	0.009901	0.009901	0.059406	0.099010
DT	0.009901	0.009901	0.009901	0.009901	0.009901	DT	0.009901	0.009901	0.029703	0.217822	0.683168	DT	0.019802	0.039604	0.227723	0.336634	0.366337
RF	0.009901	0.009901	0.009901	0.009901	0.009901	RF	0.009901	0.009901	0.009901	0.079208	0.366337	RF	0.009901	0.009901	0.128713	0.217822	0.287129
AB	0.009901	0.009901	0.009901	0.009901	0.009901	AB	0.009901	0.009901	0.039604	0.227723	0.782178	AB	0.019802	0.009901	0.089109	0.168317	0.158416
XGB	0.009901	0.009901	0.009901	0.009901	0.009901	XGB	0.009901	0.009901	0.009901	0.049505	0.297030	XGB	0.009901	0.029703	0.148515	0.306931	0.277228
MLP	0.009901	0.009901	0.009901	0.009901	0.009901	MLP	0.009901	0.009901	0.009901	0.009901	0.128713	MLP	0.009901	0.148515	0.425743	0.633663	0.693069

		(d)) B1					(e)) B2	, ,				(f)	B3		
	50 %	25%	10%	5%	1%		50%	25 %	10%	5%	1%		50%	25%	10%	5%	1%
KNN	0.009901	0.009901	0.009901	0.009901	0.009901	KNN	0.009901	0.009901	0.009901	0.019802	0.198020	KNN	0.118812	0.227723	0.346535	0.386139	0.514851
SVM	0.009901	0.009901	0.009901	0.009901	0.009901	SVM	0.009901	0.009901	0.009901	0.009901	0.376238	SVM	0.970297	0.950495	0.920792	0.930693	0.920792
DT	0.009901	0.009901	0.009901	0.009901	0.009901	DT	0.009901	0.009901	0.009901	0.217822	0.762376	DT	0.782178	0.920792	0.940594	0.950495	0.960396
RF	0.009901	0.009901	0.009901	0.009901	0.009901	RF	0.009901	0.009901	0.019802	0.277228	0.801980	RF	0.148515	0.217822	0.386139	0.326733	0.514851
AB	0.009901	0.009901	0.009901	0.009901	0.009901	AB	0.009901	0.009901	0.009901	0.138614	0.732673	AB	0.732673	0.861386	0.881188	0.930693	0.950495
XGB	0.009901	0.009901	0.009901	0.009901	0.009901	XGB	0.009901	0.009901	0.019802	0.326733	0.772277	XGB	0.158416	0.376238	0.524752	0.435644	0.554455
MLP	0.009901	0.009901	0.009901	0.009901	0.009901	MLP	0.009901	0.009901	0.009901	0.495050	0.871287	MLP	1.000000	1.000000	1.000000	0.990099	0.990099

(g) C1 (h) C2

(i) C3

Results for Recall (1/2)



Results for Recall (2/2)

	50%	25%	10%	5%	1%		50 %	25%	10%	5%	1%		50%	25%	10%	5%	1%
KNN	0.009901	0.009901	0.009901	0.009901	0.009901	KNN	0.009901	0.009901	0.009901	0.188119	0.712871	KNN	0.801980	0.801980	0.900990	0.881188	0.881188
SVM	0.009901	0.009901	0.009901	0.009901	0.009901	SVM	0.009901	0.009901	0.009901	0.009901	0.336634	SVM	0.039604	0.099010	0.148515	0.108911	0.178218
DT	0.009901	0.009901	0.009901	0.009901	0.009901	DT	0.009901	0.009901	0.009901	0.009901	0.188119	DT	0.861386	0.910891	0.960396	0.920792	0.930693
RF	0.009901	0.009901	0.009901	0.009901	0.009901	RF	0.009901	0.009901	0.009901	0.118812	0.633663	RF	0.336634	0.247525	0.267327	0.227723	0.237624
AB	0.009901	0.009901	0.009901	0.009901	0.009901	AB	0.009901	0.009901	0.009901	0.009901	0.148515	AB	0.762376	0.801980	0.881188	0.861386	0.821782
XGB	0.009901	0.009901	0.009901	0.009901	0.009901	XGB	0.009901	0.009901	0.009901	0.029703	0.336634	XGB	0.514851	0.534653	0.594059	0.475248	0.534653
MLP	0.009901	0.009901	0.009901	0.009901	0.009901	MLP	0.009901	0.009901	0.009901	0.089109	0.336634	MLP	1.000000	1.000000	1.000000	1.000000	1.000000

	(a)	A1	, Re	call			(b)) A2	2, Re	ecall			(c)) A3	, Re	ecall	
	50%	25%	10%	5%	1%		50 %	25%	10%	5%	1%		50%	25%	10%	5%	1%
KNN	0.009901	0.009901	0.009901	0.009901	0.009901	KNN	0.009901	0.009901	0.009901	0.039604	0.158416	KNN	0.089109	0.128713	0.267327	0.297030	0.366337
SVM	0.009901	0.009901	0.009901	0.009901	0.009901	SVM	0.009901	0.009901	0.009901	0.019802	0.089109	SVM	0.059406	0.138614	0.138614	0.089109	0.158416
DT	0.009901	0.009901	0.009901	0.009901	0.009901	DT	0.009901	0.009901	0.079208	0.217822	0.603960	DT	0.128713	0.396040	0.663366	0.742574	0.871287
RF	0.009901	0.009901	0.009901	0.009901	0.009901	RF	0.009901	0.009901	0.009901	0.029703	0.079208	RF	0.029703	0.247525	0.386139	0.485149	0.673267
AB	0.009901	0.009901	0.009901	0.009901	0.009901	AB	0.009901	0.009901	0.049505	0.158416	0.455446	AB	0.267327	0.653465	0.900990	0.900990	0.970297
XGB	0.009901	0.009901	0.009901	0.009901	0.009901	XGB	0.009901	0.009901	0.029703	0.148515	0.534653	XGB	0.039604	0.158416	0.415842	0.544554	0.594059
MLP	0.009901	0.009901	0.009901	0.009901	0.009901	MLP	0.009901	0.009901	0.108911	0.574257	0.970297	MLP	0.257426	0.168317	0.099010	0.128713	0.128713

	(g)) B1	, Re	ecall			(h)) B2	2, Re	ecall			(i)) B3	, Re	call	
	50 %	25%	10%	5%	1%		50%	25%	10%	5%	1%		50%	25%	10%	5%	1%
KNN	0.009901	0.009901	0.009901	0.009901	0.009901	KNN	0.009901	0.009901	0.059406	0.128713	0.356436	KNN	0.792079	0.712871	0.554455	0.574257	0.623762
SVM	0.009901	0.009901	0.009901	0.009901	0.009901	SVM	0.237624	0.019802	0.049505	0.128713	0.138614	SVM	0.871287	0.891089	0.881188	0.900990	0.900990
DT	0.009901	0.009901	0.009901	0.009901	0.009901	DT	0.009901	0.009901	0.188119	0.623762	0.920792	DT	0.465347	0.425743	0.524752	0.455446	0.603960
RF	0.009901	0.009901	0.009901	0.009901	0.009901	RF	0.009901	0.009901	0.009901	0.019802	0.059406	RF	0.960396	0.910891	0.881188	0.861386	0.851485
AB	0.009901	0.009901	0.009901	0.009901	0.009901	AB	0.009901	0.009901	0.128713	0.524752	0.841584	AB	0.792079	0.811881	0.891089	0.782178	0.910891
XGB	0.009901	0.009901	0.009901	0.009901	0.009901	XGB	0.009901	0.009901	0.039604	0.168317	0.287129	XGB	0.554455	0.594059	0.574257	0.584158	0.722772
MLP	0.009901	0.009901	0.009901	0.009901	0.009901	MLP	0.722772	0.089109	0.247525	0.405941	0.504950	MLP	1.000000	1.000000	1.000000	0.970297	0.970297

(m) C1, Recall

(n) C2, Recall

(o) C3, Recall

Permutation slope

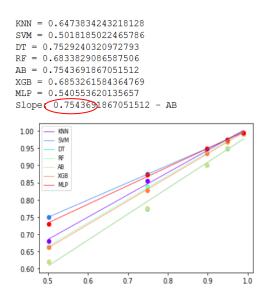
For each classifier and each permutation percentage, we compute:

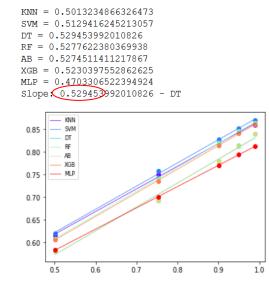
- the mean of correlation coefficient *r*,
- and the mean of performance score.

Then, we compute the **slope** as the maximum abs(intercept) of all regression lines computed for each classifier (using regression line we minimize the sum of squared residuals).

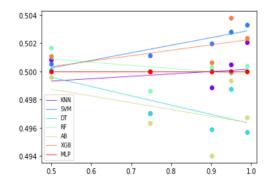
Example:

A1, A2, A3 datasets (prev=0.25), Balanced Accuracy





KNN = 0.0016955610875442864 SVM = 0.005371807316245113 DT = -0.006596210510203646 RF = -0.002225722667557547 AB = -0.004807503506193736 XGB = 0.0038706404350221752 MLP = 3.5597713425436314e-16 Slope: 0.006596210510203646 - DT



9 toy datasets – Slopes (max percentage: 50%)

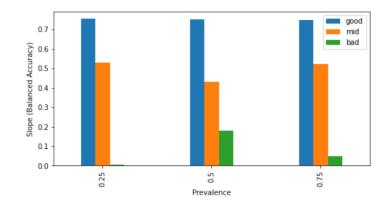
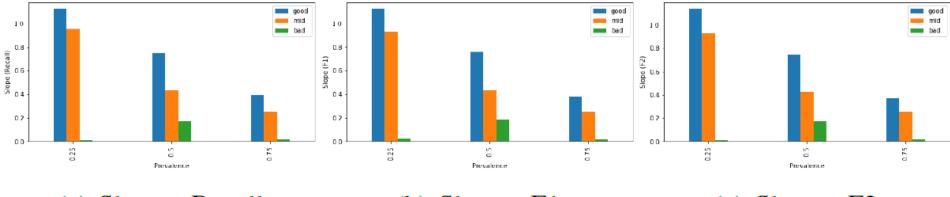


Fig. 4: Slopes, Balanced Accuracy



(a) Slopes, Recall

(b) Slopes, F1

(c) Slopes, F2

Limits of detection

- Dataset examples:
- X = 1000 obs, 1% of labels = 10 labels
- X = 1000000 obs, 1% of labels = 100000 labels

Since we want to detect all relationship problems in the dataset, intuitively, we should permute the smallest possible number of labels.

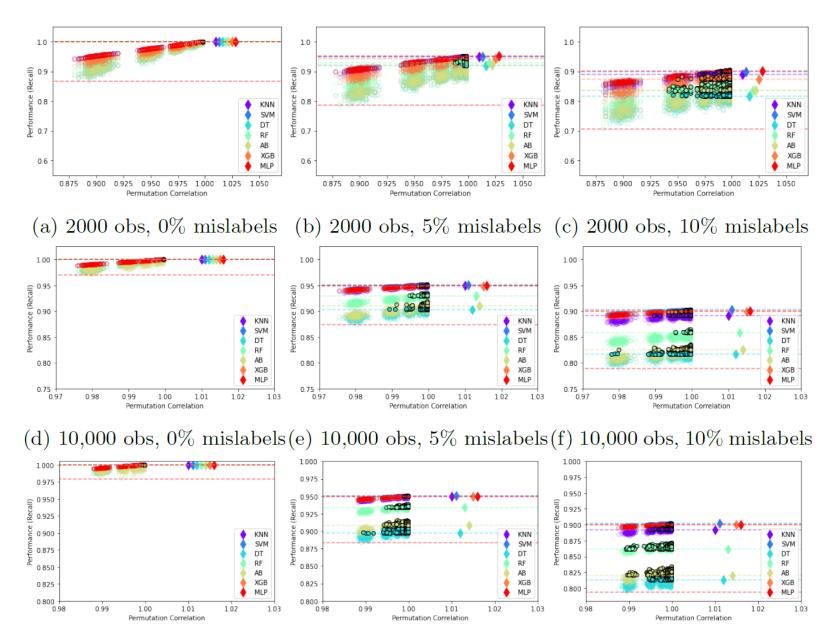
For example: 100, 50, 25, 10, 5, 1 obs – regardless of dataset size

Experiment

- inSDN dataset public dataset with 68,424 normal and 275,465 attack data (DoS, Probe, brute force attacks (BFA), password-guessing (R2L), web application attacks, and Botnet), 83 features
- We considered Probe attacks
- We created balanced datasets with 2000, 10,000 and 20,000 obs (prev = 0.5)
- To the original datasets we introduced 5% and 10% mislabels
- Permutation policy: 100, 50, 25, 10, 5, 2, 1 obs
- Pool of classifiers: KNN, SVM, Decision Tree, Random Forest, AdaBoost, XGBoost, Multi-Layer Perceptron (default hyperparameters)
- Stratified 2-fold CV with shuffling
- Recall metric

	Flow Duration	Tot Fwd Pkts		TotLen Fwd Pkts	TotLen Bwd Pkts	Fwd Pkt Len Max	Pkt	Fwd Pkt Len Mean	Fwd Pkt Len Std	Bwd Pkt Len Max	Bwd Pkt Len Min	Bwd Pkt Len Mean	Bwd Pkt Len Std	Flow Byts/s	Flow Pkts/s	Flow IAT Mean	Flow
0	506706	11	12	1067	31337	517	0	97.0000	196.5645	16900	0	2611.4167	4920.5026	63950.2986	45.3912	2.3032e+04	9.0809e
1	62435590	20	33	6365	21205	1644	0	318.2500	539.2679	4304	0	642.5758	1242.9272	441.5751	0.8489	1.2007e+06	7.2460e
2	6192375	21	19	3119	5524	708	0	148.5238	216.8358	2600	0	290.7368	697.0737	1395.7488	6.4596	1.5878e+05	8.0322e
3	22428	4	2	31	0	31	0	7.7500	15.5000	0	0	0.0000	0.0000	1382.2008	267.5227	4.4856e+03	9.8245e
4	15147441	8	10	2281	928	1713	0	285.1250	604.0209	756	0	92.8000	237.1731	211.8510	1.1883	8.9103e+05	2.5312e

inSDN - Permutation charts



(g) 20,000 obs, 0% mislabels(h) 20,000 obs, 5% mislabels(i) 20,000 obs, 10% mislabels

			200)0 o	bs					20	000	obs					20	00 0	\mathbf{bs}		
		0%	% n	nisla	bels	3			ļ	5%	mis	labe	els			10)%	mis	labe	els	
	100	50	25	10	5	2	1	100	50	25	10	5	2	1	100	50	25	10	5	2	1
KNN						.02	.02					.01	.08	.16				.05	.13	.18	.14
SVM						.02	.02					.02	.13	.15					.07	.25	.31
DT										.02	.18	.21	.33	.38		04.	26	.51	.66	.62	.64
RF										.12	.66	.81	.91	.89			10	.32	.51	.52	.56
AB										.01	.13	.17	.24	.32		06.	26	.52	.70	.68	.68
XGB										.42	.86	.94	.95	.97			05	.23	.38	.43	.41
MLP						.03	.01	•				.02	.17	.21				.12	.34	.74	.74
		1	10,0	000 d	\mathbf{bs}					10	,000) ob	s				10,	000	obs	3	
		0%	% n	nisla	bels	3			ļ	5%	mis	labe	els			10)%	mis	labe	els	
	100	50	25	10	5	2	1	100	50	25	10	5	2	1	100	50	25	10) 5	2	1
KNN											.06	.15	.28	.30			06	.17	.21	.22	.30
SVM						.02	.05					.02	.11	.10					.03	.15	.19
DT										.01	.05	.06	.10	.12	.01	.12	.35	5.53	.56	6.53	3.55
\mathbf{RF}											.08	.13	.10	.15				.05	.07	.05	.04
AB										.02	.03	.07	.06	.07		02.	08	.20	.17	.14	.16
XGB											.01	.05	.11	.10			01	.09	.15	.17	.19
MLP					.03	.19	.21					.03	.19	.22				.02	.06	.21	.26
		4	20,0	000 o	\mathbf{bs}					20	,000) ob	s				20,	000	obs	3	
		0%	% n	nisla	bels	8			ļ	5%	mis	labe	els			10)%	mis	labe	els	
	100	50	25	10	5	2	1	100	50	25	10	5	2	1	100	50	25	10) 5	2	1
KNN										.10	.47	.60	.66	.69			.07	.17	.20	.23	3.25
SVM					.05	.22	.24				.02	.09	.27	.24				.02	.16	.48	8.48
DT					.05	.26	.27		06	.26	.46	.46	.49	.56	.11	.38	.55	6.68	67.	68. 7	8.68
\mathbf{RF}					.18	.46	.50			.05	.15	.15	.16	.18	.04	.21	.42	2.55	.60	.61	.61 l
AB					.08	.30	.44		05	.12	.28	.36	.32	.39	.14	.41	.54	.61		8.68	8.68
XGB				.01	.30	.59	.65				.02	.13	.43	.33			.15	.63	.80	.80	.81
MLP				.03	.03	.57	.56					.04	.19	.24				.08	.27	.67	7.65

inSDN p-value tables

	2000 obs	2000 obs	2000 obs
	0% mislabels	5% mislabels	10% mislabels
KNN	1.0	0.951	0.899
SVM	1.0	0.95	0.9
DT	1.0	0.907	0.814
\mathbf{RF}	1.0	0.921	0.852
AB	1.0	0.908	0.816
XGB	1.0	0.926	0.881
MLP	1.0	0.95	0.9
	10,000 obs	10,000 obs	10,000 obs
	0% mislabels	5% mislabels	10% mislabels
KNN	1.0	0.948	0.891
SVM	1.0	0.951	0.902
DT	1.0	0.901	0.814
RF	1.0	0.93	0.854
AB	1.0	0.909	0.822
XGB	1.0	0.949	0.902
MLP	1.0	0.95	0.9
	20,000 obs	20,000 obs	20,000 obs
	0% mislabels	5% mislabels	10% mislabels
KNN	1.0	0.948	0.893
SVM	1.0	0.95	0.902
DT	1.0	0.9	0.809
RF	1.0	0.936	0.864
AB	1.0	0.91	0.82
XGB	1.0	0.95	0.9
MLP	1.0	0.95	0.901

inSDN true scores - recall

Permutation slopes

Max percentage: 5%, 1%, 0.5% respectively

Dataset	0% misl	abels	5% misl	abels	10% mis	slabels
2000 obs	0.97279	DT	0.78068	DT	0.60636	\mathbf{RF}
10,000 obs	1.04494	AB	0.82356	DT	0.70278	AB
20,000 obs	1.04837	DT	0.85276	DT	0.63686	DT

Limitations

PerQoDA does not detect all dataset problems

- > Labeled datasets are required
- PerQoDA is affected by the quality and adaptation possibilities of classifiers
- Computational cost

Conclusions

- > We need high-quality datasets
- Suitable assessment of the dataset quality is critical for building reliable high-quality models that can be put into real autonomous networks
- PerQoDA can be useful method in the DQA process

Thank you very much