Cross Device Flows

Pieter Kasselman

Daniel Fett

Filip Skokan

IETF 116 Yokohama (March 2023)

Date: 31 March 2023

Agenda

- Why are we here?
- Where are we?
- Where do we go next?

Why are we here?

Anatomy of an attack

Where Protocol Analysts and Standards Experts

Mind the Gap – Where Attackers (often) Enter

Cross-Device Flow Social Engineering Exploit

Attack Pattern Summary: Exploit the Unauthenticated Channel

- 1. Initiate the session, retrieve code (QR code, user code)
- 2. Use social engineering to change context and persuade user to authorize session (illicit consent grant)
- 3. Bypasses multi-factor authentication (don't need to harvest credentials)

Designed for Homo Securitus, used by Homo Sapiens

Homo Securitus

- 1. A security expert
- 2. Knows how the protocol should work
- 3. Detects a social engineering attempt
- 4. Is laser focused on current context
- 5. Foolproof mitigation for cross device flows

But is a rare species....

Homo Sapiens

- 1. "Expertise elsewhere" not a security expert
- 2. Busy and in a rush, needs to get things done
- 3. Worries about breaking things
- 4. Wants to help

Needs to make fewer decision, Needs help to make better decisions Needs protection even if a bad decision is made

Mitigation Framework

Where are we?

Attacks The Journey (thus far) OSW 2021 1'st Description **IETF 113** Solicit interest OSW 2022/Identiverse Call for solutions **IETF 114** Update on progress/findings **IETF 115** Dec 2022 **BCP** Draft BCP Draft WG Adoption -00 **IETF 116** BCP Draft Update -01

Cross-Device Flows: Security Best Current Practice

<u>draft-ietf-oauth-cross-device-security-01 - Cross-Device Flows: Security Best Current Practice</u>

draft-ietf-oauth-cross-device-security-01

Web Authorization Protocol

Internet-Draft

Intended status: Best Current Practice

Expires: 14 September 2023

P. Kasselman

Microsoft

D. Fett

yes.com

F. Skokan

0kta

13 March 2023

Cross-Device Flows: Security Best Current Practice draft-ietf-oauth-cross-device-security-01

What's New: Distinguish protocol patterns

Figure 2: Cross Device Flows (Client Transferred)

What's New: Additional Scenarios

Classified according to protocol pattern

What's New: Exploits for each pattern

Figure 4: Attacker Initiated Cross Device Flow Exploit (User Transferred Pattern)

Figure 5: Attacker Initiated Cross Device Flow Exploit (Client Transferred Pattern)

Figure 6: Attacker Initiated Cross Device Flow Exploit (Hybrid Pattern)

What's New: Additional Exploits

3.11.	Example B7:	Illicit	session transfer (Hybrid Pattern) 19
3.12.	Example B8:	Account	takeover (User Transferred
	Pattern) .		

Classified according to protocol pattern

What's New: Mitigation Limitations

Limitations: Proximity mechanisms raises the bar for an attack. However, depending on how the proximity check is performed, an attacker may be able to circumvent the protection: The attacker can use a VPN to simulate a shared network or spoof a GNSS position. For example, the attacker can try to request the location of the end-user's authorization device through browser APIs and then simulate the same location on his initiating device using standard debugging features available on many platforms.

Limitations: Starting with and authenticated does not prevent the attacks described in Example B5: Illicit Network Join and Example B7: Illicit Session Transfer and it is recommended that additional mitigations described in this document is used if the cross-device flows are used in scenarios such as Example A5: Add a device to a network and Example A7: Transfer a session.

+======================================	+====== -		
Mitigation 		Disrupt	•
Establish Proximity	X	X	
Short Lived/Timebound Codes		X	
One-Time or Limited Use Codes	 	X	
Unique Codes	 	X	
Content Filtering		X	
Detect and remediate	 	 	X
Trusted Devices	X	 	
Trusted Networks	X	 	
Limited Scopes		 	X
Short Lived Tokens	 	 	X
Rate Limits	X	X	
Sender Constrained Tokens	 	 	X
User Experience	X	 	
Authenticated flow	X	 	
+	+	+	+

Table 1: Practical Mitigation Summary

Where do we go Next?

Seen in other places....

Secure Ranging and Proximity

- IEEE 802.15.4 Ultra Wide Band (UWB)
- Designed to be resistant to relay type attacks
- Developing new use cases in <u>FiRa Consortium</u>

OpenID for Verifiable Presentations over BLE

Too early to reference or consider in the BCP?

Workgroup: OpenID Connect

Internet-Draft: openid-for-verifiable-presentations-offline-1_0-00

Published: 15 November 2022
Intended Status: Standards Track

Intended Status: Standards Track

Authors: K. Yasuda T. Lodderstedt K. Nakamura Sasikumar Ramesh

Microsoft yes.com Panasonic MOSIP MOSIP

OpenID for Verifiable Presentations over BLE

Open Issues

Editorial update to Limitations section for Authenticated Flows #44 opened 36 minutes ago by PieterKas	
Add references to secure ranging / attested proximate location #43 opened 2 days ago by PieterKas	
Coin a phrase for the type of attack #42 opened last week by PieterKas	
Decide on capitalization of "initiating device" and "authorization device" #41 opened last week by aaronpk	
Add clarification that authentication may be required prior to authorization for the client initiated postage ago by PieterKas	attern.

PRs

☐ \$\fixed typos and grammar edits \(\square \)

#40 opened last week by aaronpk

☐ \$\frac{11}{11}\$ Minor suggestions (typo fixes etc.)

#38 opened 2 weeks ago by kmzs

Coin a Phrase to Describe the Attack

- Illicit Consent Grant Attack?
 - Describes outcome, not the mechanism
- Attacker-in-the-Middle Attack?
 - Describe attacker capability, but both too broad and too narrow
- Authorization Context Manipulation Attack?
 - Describes the mechanism
- Authorization Context Manipulation Exploit?
 - Describe mechanism, hints that protocol functions as expected.
- Other?

Formal Analysis by University of Stuttgart

Research Team:

Pedram Hosseyni Tim Würtele

Klaas Pruiksma

Clara Waldmann

Focused on Device Authorization Grant Expecting results towards the end of summer

