
OAuth 2.0 Protected Resource Metadata

Authorization Server Discovery

https://datatracker.ietf.org/doc/html/draft-jones-oauth-resource-metadata/
https://datatracker.ietf.org/doc/html/draft-parecki-oauth-authorization-server-discovery/

1

Aaron Parecki

Mike Jones

Ben Schwartz

IETF 116

Yokohama

March 2023

Two drafts with a subset of overlapping functionality

● Commonality
○ Both enable Resource Servers to identify Authorization Servers for a Client to use

● Differences
○ draft-jones-oauth-resource-metadata

■ .well-known container for extensible set of metadata about the resource

■ Analogous to Authorization Server Metadata data structures defined by RFC 8414

■ authorization_serversmetadata value is an array of Authorization Server issuers

■ Can also publish keys, algorithms, documentation, etc.

○ draft-parecki-oauth-authorization-server-discovery

■ Provides exactly one piece of metadata - an Authorization Server issuer value

■ Provides it in WWW-Authenticate response with issuer parameter

● Mike will describe first approach - Aaron will describe second

● Thanks to Aaron for suggesting combining discussions!

OAuth 2.0 Protected Resource Metadata

Example Protected Resource Metadata Request

GET /.well-known/oauth-protected-resource HTTP/1.1
Host: resource.example.com

Example Protected Resource Metadata Response

HTTP/1.1 200 OK
Content-Type: application/json

{
"resource":

"https://resource.example.com",
"authorization_servers":

["https://as1.example.com/",
"https://as2.example.net/"],

"bearer_methods_supported":
["header", "body"],

"resource_documentation":
"http://resource.example.com/resource_documentation.html"

}

This is the metadata element that tells
Clients what Authorization Server issuer
URLs they can use with this Protected
Resource

History

● 2016: Protected Resource Metadata draft created in parallel with

Authorization Server Metadata draft (which became RFC 8414)
○ AS Metadata was in use at the time and progressed by the WG

○ Protected Resource Metadata was not in use, and was not adopted

● 2022: Protected Resource Metadata reference added to OpenID Connect

Federation specification

● 2023: PR Metadata in production use in Italian Federation deployments
○ Required by https://italia.github.io/spid-cie-oidc-docs/en/metadata_aa.html

● This week - new draft published incorporating IANA feedback

https://italia.github.io/spid-cie-oidc-docs/en/metadata_aa.html

Authorization Server Discovery

Who is this for?

● Calendar / email apps that work with many resource servers and

authorization servers with no prior relationship to either

OPTIONS /home/bemasc/calendars HTTP/1.1
Host: cal.example.com

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer issuer="https://authorization-server.com/" scope="read"

The specifics of this header are TBD, the
important part is it has the full issuer URL
of the authorization server.

Step 1: The Trigger

Note: The authorization server URL
could be under the control of the
resource server or a completely
unrelated server depending on how
you want to deploy it.

GET https://authorization-server.com/.well-known/oauth-authorization-server HTTP/1.1

HTTP/1.1 200 Ok
Content-Type: application/json

{
"issuer": "https://authorization-server.com/",
"authorization_endpoint": "https://authorization-server.com/authorize",
"token_endpoint": "https://authorization-server.com/oauth/token",
"registration_endpoint": "https://authorization-server.com/oauth/clients",
"response_types_supported": "code",
...

}

Step 2: Client Discovers AS Metadata

Where to open the browser to

Where
to get
the
tokens
from

https://authorization-server.com/authorize?client_id=***&redirect_uri=***&scope=read
&code_challenge=XXXX&code_challenge_method=S256&state=XXX

Step 3: Initiate OAuth Flow

Client launches a browser to initiate the OAuth flow…

Note: The client_id could be:
● Pre-registered out of band
● Registered dynamically via

RFC7591
● Provided as a URI according to

a new specification

Note: The redirect_uri could be
● Custom URL scheme
● localhost:port
● “out-of-band”

Normal OAuth flow proceeds,
enabling strong MFA and
passwordless, as well as SSO

POST /oauth/token HTTP/1.1
Host: authorization-server.com
Content-type: application/x-www-form-urlencoded

grant_type=authorization_code
&client_id=***
&code_verifier=XXXX

HTTP/1.1 200 OK
Content-type: application/json

{
"token_type": "Bearer",
"expires_in": 86400,
"access_token": "XXXXXXXX",
"refresh_token": "YYYYYYYYY",
"scope": "read"

}

Step 4: OAuth flow is complete

OAuth flow completes, authorization server redirects to redirect_uri with authorization code, client

exchanges code for an access token

Note: Refresh token is up to the
discretion of the AS, but can be
used to get a new token when the
current one expires if the AS
doesn’t need the user to re-
authenticate themselves.

GET /home/bemasc/calendars HTTP/1.1
Host: cal.example.com
Authorization: Bearer XXXXXXXXX

CALENDAR DATA RESPONSE
…

Step 5: Resource request

Client uses access token to fetch data

Note: There are opportunities here
to also leverage the new step-up
OAuth draft as well, if the RS wants
the user to come back with a new or
different access token

Next Steps

Possible Next Steps

● Deliberate on overlapping functionality between the two drafts
○ The point of this combined presentation!

○ Possibly combine approaches?

○ For instance, could add WWW-Authenticate resource_metadata response to draft-jones-

oauth-resource-metadata

● Note temporal differences in mechanisms
○ .well-known operates at configuration/set-up time

○ WWW-Authenticate operates just-in-time at request time

○ For instance, calendar apps may have a configuration phase

● Working group adoption of draft-jones-oauth-resource-metadata?
○ Because it’s now in use

	Slide 1
	Slide 2: Two drafts with a subset of overlapping functionality
	Slide 3: OAuth 2.0 Protected Resource Metadata
	Slide 4: Example Protected Resource Metadata Request
	Slide 5: Example Protected Resource Metadata Response
	Slide 6: History
	Slide 7: Authorization Server Discovery
	Slide 8: Who is this for?
	Slide 9: Step 1: The Trigger
	Slide 10: Step 2: Client Discovers AS Metadata
	Slide 11: Step 3: Initiate OAuth Flow
	Slide 12: Step 4: OAuth flow is complete
	Slide 13: Step 5: Resource request
	Slide 14: Next Steps
	Slide 15: Possible Next Steps

