Security Considerations for Session Key Reuse in OpenPGP Crypto-Refresh

Falko Strenzke^{MTG}

MTG: MTG AG, Germany

Background: Reply to All with Session Key Reuse

The Session-Key-Reuse Mechanism

Avoiding Pitfalls

Interoperability

Requirements for Secure Use of SKR

Conclusion

Background: Reply to All with Session Key Reuse (SKR)

https://gitlab.com/openpgp-wg/rfc4880bis/-/merge_requests/228

- Session-Key-Reuse in crypto-refresh
 - previously:
 - new session key for each message encrypted in PKESK
 - encrypt message directly with session key
 - new in v6 PKESK:
 - key derivation of message encryption key from session-key encrypted in v6 PKESK and from per-message salt value
 - key derivation based on HMAC: necessary to avoid CFB downgrade (most likely needed for any of the AE modes!)
 - allows to reuse existing PKESK for reply with different salt value

The Session-Key-Reuse (SKR) Mechanism

- message-key = HKDF(session-key, salt) // simplified
- new salt for each message

Pitfall 1: Replying to only a subset of the original recipients

Pitfall 1a: Attacker removes themselves from recipient list

- like Pitfall 1, but attacker with network / mailbox access removes themselves from recipient list
- → use Intended Recipient Fingerprint subpacket

Pitfall 2: Replying to more than the original recipients

Pitfall 2a: Save Msg. Then Add more Recipients

Pitfall 3: Interfering Session Key Reuse

Interop: Save Msg. then Open with Other Client

- Possible interoperability problem if user has multiple clients with differing support for SKR
- Non-supporting client sees stored encrypted message to a recipient that it doesn't have public key to. What happens if
 - message is sent unchanged (may work),
 - message is changed (may work),
 - recipient list is changed? (may work, but then Pitfalls 1 & 2 apply!¹)

¹Unsolvable security hole depending on non-supporting client ⟨ ≘ ⟩ ⟨ ≘ ⟩

Requirements for Secure Use of SKR

Security Considerations:

- signalling of SKR necessary
- user control necessary
- otherwise might be used when user does not expect it:
 - has recipient public key but expires
 - using slightly different e-mail address ²
- risk of two users being caught in continued session key reuse unknowingly
- ▶ in some application context, notion of what is a reply and what a new message might not be clear ²
- Security considerations strongly suggest to implement SKR only by using application-specific guidance documentation

 $^{^2}$ not explicitly mentioned in security considerations $_{\scriptsize \textcircled{\tiny 1}}$

Comments?

