Security Considerations for Session Key Reuse in OpenPGP Crypto-Refresh

Falko StrenzkeMTG

MTG: MTG AG, Germany
Background: Reply to All with Session Key Reuse

The Session-Key-Reuse Mechanism

Avoiding Pitfalls

Interoperability

Requirements for Secure Use of SKR

Conclusion
Background: Reply to All with Session Key Reuse (SKR)

https://gitlab.com/openpgp-wg/rfc4880bis/-/merge_requests/228

- Session-Key-Reuse in crypto-refresh
 - previously:
 - new session key for each message encrypted in PKESK
 - encrypt message directly with session key
 - new in v6 PKESK:
 - key derivation of message encryption key from session-key encrypted in v6 PKESK and from per-message salt value
 - key derivation based on HMAC: necessary to avoid CFB downgrade (most likely needed for any of the AE modes!)
 - allows to reuse existing PKESK for reply with different salt value
The Session-Key-Reuse (SKR) Mechanism

- **initial message**
 - v6 PKESK recipient 1
 - v6 PKESK recipient 2
 - v6 PKESK sender
 - v2 SEIPD contains salt

- **normal reply**
 - v6 PKESK recipient 1
 - v6 PKESK recipient 2
 - v6 PKESK sender
 - v2 SEIPD contains salt'

- **reply with SKR**
 - v6 PKESK recipient 1
 - v6 PKESK recipient 2
 - v6 PKESK sender
 - v2 SEIPD contains salt"

- message-key = HKDF(session-key, salt) // simplified
- new salt for each message
Pitfall 1: Replying to only a subset of the original recipients

Alice: new encrypted message …

Bob: …2

nd recipient

Eve:

reply with SKR message

Eve can read this message

IETF 116 – 03/2023 | OpenPGP Session Key Reuse
Pitfall 1a: Attacker removes themselves from recipient list

- like Pitfall 1, but attacker with network / mailbox access removes themselves from recipient list
- → use Intended Recipient Fingerprint subpacket

Alice: new encrypted message...

Bob: intercepted

...Bob is 2nd recipient

Eve: stripped & forwarded

new encrypted message to Bob

reply with SKR message

reply

Bob does not see recipient Eve

Eve can read this message
Pitfall 2: Replying to more than the original recipients

Alice:

first msg

new encrypted message

reply with SKR message

Bob:

Eve:

Eve can read this message

reply with SKR message
Pitfall 2a: Save Msg. Then Add more Recipients

Alice:

Bob:

IMAP:

Eve:

first msg
new encrypted message
store draft msg, loose SKR context (!?)
resume draft msg
add Eve as recipient
reply with SKR message

Eve can read this message

reply with SKR message
Pitfall 3: Interfering Session Key Reuse

Alice: Reuse session key of encrypted file

Bob: New encrypted message

Encrypted File: Can decrypt session key

Eve: Can read this message (also)

Reply: Reply with SKR message
Interoperability

Interop: Save Msg. then Open with Other Client

- Possible interoperability problem if user has multiple clients with differing support for SKR
- Non-supporting client sees stored encrypted message to a recipient that it doesn’t have public key to. What happens if
 - message is sent unchanged (may work),
 - message is changed (may work),
 - recipient list is changed? (may work, but then Pitfalls 1 & 2 apply!\(^1\))

\(^1\)Unsolvable security hole depending on non-supporting client
Requirements for Secure Use of SKR

Security Considerations:

- signalling of SKR necessary
- user control necessary
- otherwise might be used when user does not expect it:
 - has recipient public key but expires
 - using slightly different e-mail address
- risk of two users being caught in continued session key reuse unknowingly
- in some application context, notion of what is a reply and what a new message might not be clear
- Security considerations strongly suggest to implement SKR only by using application-specific guidance documentation

\(^2\) not explicitly mentioned in security considerations
Comments?