
Secure Partitioning Protocols
Phillipp Schoppmann – IETF 116



Background: Aggregate Statistics Measurements

… 

MPC Cluster

Clients



Background: Aggregate Statistics Measurements

… 

MPC Cluster

Encrypted Reports

Clients



Background: Aggregate Statistics Measurements

… 

MPC Cluster

Encrypted Reports

Clients



Background: Aggregate Statistics Measurements

… 

MPC Cluster Aggregate Result

Encrypted Reports

Clients



Sharding MPC Clusters

Challenge: How to partition reports across shards, s.t. all reports of the same client end up 
in the same shard?



Goals

● Inputs from the same client end up in the same shard
● Low communication overhead and round complexity
● Partitioning must not affect correctness / utility of downstream computation

Assumptions

● Bound M on the number of contributions per client
● Lots of clients (billions), few shards (thousands)



Blueprint: Partitioning from Distributed OPRFs
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Dense Partitioning: Adding Dummies

S

d1~TSDLap(𝜆, t)

d2~TSDLap(𝜆, t)
dS~TSDLap(𝜆, t)

…

M: Upper bound on the number of ciphertexts with the same index / from the same client
S: Number of shards
TSDLap(𝜆, t): Truncated, shifted, discrete Laplace distribution with mean t and scale 𝜆

Expected #dummies per bucket for ε = 0.5 and δ = 10-11: 49M per server



Sparse Partitioning: OPRF Output = Random Client ID

● If the OPRF codomain is large enough to make collisions unlikely, we can use 
the OPRF outputs as a pseudorandom client identifier.

● Allows local per-client aggregation (e.g., using Homomorphic Encryption)
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● Map FK(i) to 
partition for 
Enc1,2(v);

● Perform local 
aggregation



Sparse Partitioning Protocol

K1, K1’

(indi, vali),
vali = [vali]1+ [vali]2+ [vali]3

EncK2(H(indi))
EncK2(
  EncK1([vali]1),EncK2([vali]2), EncK3([vali]3)
)

K2EncK2(H(indi)
K1’)

EncK2(
  EncK1([vali]1),EncK2([vali]2), EncK3([vali]3)
)

ind’i = H(indi)
K1’Add dummies 

and rerandomize

Assign ciphertexts to 
shards s.t. all distinct ind’i 
end up in the same shard



Assigning Ciphertexts to Shards 
N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
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How to make sparse histogram private without seeing it?

Server 1 can add dummy contributions in two ways:

● duplicate existing clients’ indices, replacing values with Enc(0)
○ Useful to hide the exact count of indices that are common

● add new fake indices with value 0
○ Useful to hide the exact count of indices that are rare

Our approach:

1. Choose Threshold T
2. For each multiplicity i < T, add i fake indices ~Laplace times
3. Duplicate each ciphertext ~NegativeBinomial times



Conclusion

● Distributed OPRFs allow for efficient sharding protocols.
● When the number of shards is much smaller than the number of clients, the 

overhead is negligible.
● For a slightly larger (10%) overhead, we can enable local aggregation at one of 

the servers. Example application: Sparse histogram computation [1].

[1] Bell, James, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and Phillipp Schoppmann. "Distributed, 
Private, Sparse Histograms in the Two-Server Model." In Proceedings of the 2022 ACM SIGSAC Conference on Computer and 
Communications Security, pp. 307-321. 2022.



Next Steps

● General interest from the working group in secure partitioning?
● Other protocols or settings where this might be useful?
● Do we need additional properties (e.g., keep the order of inputs)?

https://github.com/patcg-individual-drafts/ipa/issues/49

