
Group Address Allocation Protocol
(GAAP)

draft-farinacci-pim-gaap-02

IETF Yokohama
March 2023

Dino Farinacci & Mike McBride

Sun Mar 19 16:50:33 PDT 2023

What is GAAP?

• A totally decentralized multicast group address allocation protocol

• There is no central entity that allocates group addresses

• Group addresses allocated are guaranteed to be unique among
all GAAP speakers

• GAAP nodes have zero configuration to run the protocol

2

Design Goals
• The protocol allocates both IPv4 and IPv6 group addresses

• Group addresses allocated will not collide in layer-2 IGMP/
MLD snooping switches (multicast MACs unique)

• Works on a single subnet as well as over layer-3
infrastructures, including overlays

• Can coexist with other group allocation protocols by using
an IANA GAAP allocation block

• When native multicast not available multicast-capable
overlays are used

3

How Does it Work
• Multicast source & receiver nodes participate in the

GAAP protocol

• There is an application specified group name that will
map to a group address

• A group address is a hash of the group name

• GAAP nodes send Claim messages to a well-known
IANA allocated GAAP group

• A Claim message contains the group name, group
address, and timestamp of group address creation

4

How Does it Work
• Claim messages sent every 1 minute

• If a node is part of a group name and receives a Claim for the group
name, it resets the 1 minute timer

• If a node uses a group address found in a Claim for a different group
name, a collision has occurred, first creator gets to keep the group
address, later creator has to rehash

• Nodes that detect a collision set a 1 second random delay timer to
trigger a Claim message

• Other nodes with the same group name, suppress sending triggered
Claim

• Nodes part of collided group address, will rehash with string “<group-
name>+1” as input to hash, then sends Claim for new group address

5

Partition Repair
• When a network partition occurs, not all app nodes will see Claim

messages

• During this time, collisions can occur and all or part of app nodes
could use the same collided address in their partition

• When the partition heals, within less than a minute, Claim
messages will be received and collisions will be detected and
corrected

• App nodes that have to change their address gets an app
callback (supplied in gaap.init() API call) from the GAAP library

• Allows apps to start using the new address (receivers leave old
group and join new group, sources start sending to new group)

6

Protocol Scale

• There is at most 1 Claim per group name (regardless
of the number of nodes using the group name)

• There is at most 1 Claim per collided group when
detected

• Collided addresses are not used and converge quickly
since collision detector triggers Claim

7

Protocol Security
• All messages are encrypted with Chacha20 cipher

• Default key is group name

• Can run in hybrid mode

• Protocol can detect bad actors (sending too fast, forging timestamp, etc)

• Rekeying can occur to exclude bad actors

• Overlays can help to suppress bad actors close to source

• “Re-grouping” can help even more, so input queues don’t fill

8

Protocol API
• The GAAP protocol is lightweight enough to run as a library in the multicast app

OS process

• API calls:

 gaap.init(callback_fn)
 address = gaap.allocate(group_name)
 gaap.release(group_name)
 gaap.close()

• Apps which participate in the same group, are started with the same group-name

• Apps can use multiple group-names since they may have requirements for
multiple group address use

• A lightweight app can use a lighter-weight Restful API to a GAAP proxy node that
runs the protocol (app doesn’t run the protocol directly)

9

Implementation
• GAAP Library - first phase in python

• Echo-Sender & Echo-Receiver Test App

 es <group-name> “<message>”

 er <group-name>

• GAAP Monitor Tool

 gaapshark [<group-name>]

• Suite of GAAP Utilities

 gaaphash, gaapscale, gaapcollide

10

App Demo - High Level

11

Protocol Demo - Details

12

Quick Point about Collisions
• Collisions are very rare

• There is a good chance that the Collision Claim Procedures will never run

13

These simulations ran with consecutive group-names

1M

10M

Using sha256() hash function to produce unique 24-bits

Next Steps
• More testing

• Add more security features (Shamir’s MPC Algorithm)

• Test on an overlay when no native multicast exists

• Code lightweight Restful API library

• Write more apps, suggestions?

• Seek more app developers

14

15

App Demo - High Level Protocol Demo - Details

Questions/Reactions/Tomatoes?

