
POPLAR/STAR MEASUREMENTS
https://sofiaceli.com/thoughts/STAR_verification.pdf

Sofía Celi
Brave Research

https://sofiaceli.com/thoughts/STAR_verification.pdf

Notation

● k is the threshold used for performing server-side aggregation.
● n is the total report size submitted by C clients.
● C is the set of all clients.
● S is the aggregation server.
● O is the randomness server used in STAR.
● m is a message to secret-share.
● t is an integer ∈ N that states in POPLAR that a string σ appears in a list

(a1, . . . ac) more than t times.
● σ is a string to search for in a list.
● l is the length of σ.

2

STAR

● Each client constructs a ciphertext by encrypting their measurement (and
any auxiliary data) using an encryption key derived deterministically from
randomness (derived, in turn, from the measurement)

● The client then sends:
a. the ciphertext
b. a k-out-of-n secret share of the randomness used to derive the encryption key
c. a deterministic tag informing the server which shares to combine

● The aggregation server groups reports with the same tag, and recovers
the encryption keys from those subsets of size ≥ k

3

4

5

STAR

STAR is a scheme that uses:

● An algorithm that generates deterministic randomness: OPRFs, Hashes,
AES-based…

● Secret-sharing scheme
● Sorting algorithm

6

Taken from the ACM-CSS, 2022 publication: “STAR: Secret Sharing for Private Threshold Aggregation
Reporting” by Alex Davidson, Pete Snyder, E.B. Quirk, Joseph Genereux, Bejamin Livshits, Hamed Haddadi

7

STAR

Aggregation computational times is dependent on:

● Secret-sharing algorithm:
○ STAR uses a “adept secret-sharing (ADSS)” [BDR20] scheme
○ Share generation: sharing an m-byte message M takes O(m) time and, more concretely,

about the amount of time to symmetrically encrypt and hash M
○ Secret recovery: Message recovery takes the same time as sharing
○ The scheme can be adapted to perform error-correction but it becomes exponential on

the amount of shares passed to the recovery procedure (worst-case of 2^n)

[BDR20] Mihir Bellare, Wei Dai, and Phillip Rogaway. Reimagining secret sharing: Creating a safer and
more versatile primitive by adding authenticity, correcting errors, and reducing randomness
requirements. 2020(4):461–490, October 2020.

8

Malicious shares and malicious clients

Not having error-correction (or verifiability) opens an attack against the STAR
protocol.

● There exists a set x of malicious clients that corrupt j amount of shares.
● The recovery procedure will be unable to pinpoint which share is invalid

(corrupted): the recovery procedure will halt and the whole batch of k size
will be discarded.

● This gives the possibility for malicious clients to perform DoS attacks with
the goal of discarding sets of honest measurements.

9

Solutions

● Use ADSS with error-correction → can be expensive
● Use a secret sharing scheme with verifiability (Feldman’s scheme [Fel87]

or Pedersen scheme [Ped92])
● Perform error-correction with a different construction which is the subject

of a publication under review. In the work we arrive to a construction that
achieves O(log n)

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427–437, 1987.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. pages
129–140, 1992.

10

Feldman’s scheme

● Create k amount of commitments (proof that a share is valid):
○ It runs once for a set of n shares. It is linear on the size of k (it generates k commitments

for a set of n shares).

● Verify on each share that the set of k commitments is valid:
○ It is linear on the size of k for a single share.
○ This phase can be expanded to verify a whole subset/set, in which case:

■ Iit is O(n ∗ k) for verifying the set of n shares.
■ It is O(k^2) for verifying a subset of k size.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427–437,
1987.

11

Feldman’s scheme

● Worst-case complexity: This case occurs when a corrupted share is placed at the end
of the set/subset. The cost is: cost of verifying a single-share (O(k)) * (size of set ∨ size of
subset): O(k ∗ (n ∨ k))

● Average-case complexity: Average case can be affected if the corruption probabilities
for each share vary (which is the case here as only a subset of clients can be
considered malicious): in this case, the average case depends on the probability of the
attacker of corrupting a set of shares and of the network on delivering them in a
specific order.

● Best-case complexity: This case occurs when there is only one corrupted share per
set/subset and it is placed at the start of the set/subset. The cost is: cost of verifying a
single-share (O(k)) * 1 * number of sets/subsets: O(1 ∗ (1 ∨ |{x ⊂ n : |x| = k}|))

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427–437,
1987.

12

Measurements of Feldman’s scheme

● Benchmarks in Rust of the secret sharing scheme (Shamir Secret Sharing)
with verifiability (the Feldman’s scheme): the code is not optimized.

● The Rust implementation can be found here:
https://github.com/claucece/secret-sharing-extra

● We defined the following parameters:
○ threshold (which is k, the subset size)
○ report size (which is n, the total size of the measurements reported)
○ In all cases by secret we used a string of 32 bytes in size.

● We report numbers when using curve25519/Ristretto and Sec256k1 for
the field and elliptic curve operations.

● We ran our benchmarking on a MacBook Pro with arm64, Darwin Kernel
Version 22.3.0, Apple M1 Max chip.

● We are using Rust with version 1.68.0.

13

https://github.com/claucece/secret-sharing-extra

Measurements of Feldman’s scheme

Using Curve25519/Ristretto. Numbers are reported in seconds 14

Measurements of Feldman’s scheme

Using sec256k1. Numbers are reported in seconds 15

Measurements of Feldman’s scheme

Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The numbers that relate to
the colours represent the set of size n. This is using the times reported when using Curve25519/Ristretto.

16

Measurements of Feldman’s scheme

Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The numbers that relate to the colours
represent the curve choice: Curve25519/Ristretto or sec256k1. The numbers are for n = 256 (left) and n = 2048 (right).

17

Smart STAR-VSS algorithm

1. Perform the recovery functionality first on a subset xi of k size. If it fails on
the subset, it runs the verification of that single subset xi.

2. The verification algorithm will remove the invalid shares (the subset r of
xi), and return a subset of size k − |r|.

3. The returned subset of size k − |r| can be used to construct a k size
subset (by fetching w shares from the set y of n size so that k − |r| + |w| =
k), and perform recovery again.

● Arrive to a better time complexity of the overall scheme.

18

Lightweight Techniques for Private Heavy Hitters: POPLAR

● POPLAR [BBC+21] uses incremental distributed point functions, a
cryptographic primitive that builds on standard distributed point
functions (DPFs).
○ Each client holds a l-bit string and a set of servers aggregates them.

● Cost is linear in l: length (in bits) of the string to search for.

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight
techniques for private heavy hitters. pages 762–776, 2021.

19

Measurements of POPLAR

● Benchmarks in Rust, using the measurements framework as defined in
https://github.com/henrycg/heavyhitters

● The code compiles only for a older Rust version (we are using, hence, 1.47.0) on
a older MacBook Pro 12.3.1 with 2.3 GHz Dual-Core Intel Core i5 (model
I5-7360U) with x86 64.

● This makes the POPLAR measurements perhaps not as accurate as the ones
taken for the VSS scheme.

● Ongoing work to “update” the POPLAR rust code.
● Measures the running time from the moment after the servers collect the last

incremental DPF keys from the clients until the servers produce their output.
● It tests both over 256-bit length strings and 512-bit length strings (we couldn’t

compile the code with longer strings).

20

https://github.com/henrycg/heavyhitters

Measurements of POPLAR

Numbers are reported in seconds. The threshold here represents that more than 0.01% clients hold a
specific string. 21

Measurements of POPLAR

Comparison of benchmarks: x-axis states the number of client request, y-axis states the times (in
seconds). The numbers that relate to the colours represent the input size l. 22

Conclusions

● STAR with verifiability (STAR-VSS) is efficient for k > 10 and k < 128~ (useful values in
practice).

● STAR with verifiability (STAR-VSS) is efficient depending on the curve/field chosen:
sec256k1 is faster than curve25519/ristretto.

● The performance of POPLAR is sensitive to the size of the message, while STAR is not
● POPLAR performs better than STAR-VSS given

○ a large % of malicious inputs
○ large values of k
○ small messages

● It is difficult to properly compare the schemes as they grow depending on different
parameters:
○ Both, however, are useful in practice.

23

Future work

● Measure the whole STAR functionality with VSS → probably not much
difference

● Update the POPLAR codebase → perform benchmarks in the libprio rust
code

● Formalise the verification scheme in the same formal framework as the
ADSS one

● Formalise and present the results of scheme with error-correction that
arrives to O(log n)

● Ongoing research and engineering work!

24

Thank you!
@claucece

