POPLAR/STAR MEASUREMENTS

HTTPS://SOFIACELI.COM/THOUGHTS/STAR_VERIFICATION.PDF

Sofia Celi
Brave Research

https://sofiaceli.com/thoughts/STAR_verification.pdf

Notation

k is the threshold used for performing server-side aggregation.

n is the total report size submitted by C clients.

Cis the set of all clients.

S is the aggregation server,

O is the randomness server used in STAR.

m is a message to secret-share.

tis an integer € N that states in POPLAR that a string o appears in a list
(a,...a)more than ttimes.

0 is a string to search for in a list.

e /isthelength of o.

STAR

e Each client constructs a ciphertext by encrypting their measurement (and
any auxiliary data) using an encryption key derived deterministically from
randomness (derived, in turn, from the measurement)

e The client then sends:

a. the ciphertext
b. a k-out-of-n secret share of the randomness used to derive the encryption key

c. adeterministic tag informing the server which shares to combine
e The aggregation server groups reports with the same tag, and recovers

the encryption keys from those subsets of size > k

Share creation

ri

B

r1,r2,r3 = parse(ri)

2

2

sym_key = PRG(r1)

share = SecretSharing(r1, r2)

2

ci = Encrypt(measurement, sym_key)

\ 2

message = (ci, share, tag -r3-)

Aggregation and reveal phase

Groups together messages with the same
taginto a set

Divides the set into subsets of K size

r1 =recover(share)

sym_key = PRG(r1)

measurement = decrypt(ci, sym_key)

STAR

STAR is a scheme that uses;

e An algorithm that generates deterministic randomness: OPRFs, Hashes,
AES-based...

e Secret-sharing scheme
e Sorting algorithm

10 80 1250
S 8 ~ Fass 1000
o 80601 |—— A2 g
% 8 40 3
E 4 > £ 500
T 5 e 20 o 250
0l . | . ol . 0.2 , . .
0.1 0.25 0.5 1 0.1 0.25 0.5 1 01 025 05 1
Number of clients (millions) Number of clients (millions) Number of clients (millions)

Figure 9: Aggregation server computation runtimes (seconds) based on number of clients. Graphs from left-to-right corresponding
to a threshold x € {0.01%,0.1%, 1%} of total number of client inputs. Performance is compared for both fields {F;29, F255}.

Taken from the ACM-CSS, 2022 publication: “STAR: Secret Sharing for Private Threshold Aggregation
Reporting” by Alex Davidson, Pete Snyder, E.B. Quirk, Joseph Genereux, Bejamin Livshits, Hamed Haddadi

STAR

Aggregation computational times is dependent on:

e Secret-sharing algorithm:
o STAR uses a “adept secret-sharing (ADSS)” [BDR20] scheme
o Share generation: sharing an m-byte message M takes O(m) time and, more concretely,
about the amount of time to symmetrically encrypt and hash M
Secret recovery: Message recovery takes the same time as sharing
o The scheme can be adapted to perform error-correction but it becomes exponential on
the amount of shares passed to the recovery procedure (worst-case of 2/An)

[BDR20] Mihir Bellare, Wei Dai, and Phillip Rogaway. Reimagining secret sharing: Creating a safer and
more versatile primitive by adding authenticity, correcting errors, and reducing randomness
requirements. 2020(4):461-490, October 2020.

Malicious shares and malicious clients

Not having error-correction (or verifiability) opens an attack against the STAR
protocol.

e There exists a set x of malicious clients that corrupt j amount of shares.

e The recovery procedure will be unable to pinpoint which share is invalid
(corrupted): the recovery procedure will halt and the whole batch of k size
will be discarded.

e This gives the possibility for malicious clients to perform DoS attacks with
the goal of discarding sets of honest measurements.

Solutions

e Use ADSS with error-correction — can be expensive
e Use asecret sharing scheme with verifiability (Feldman’s scheme [Fel87]

or Pedersen scheme [Ped92])
e Perform error-correction with a different construction which is the subject
of a publication under review. In the work we arrive to a construction that

achieves O(log n)

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427-437, 1987.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. pages
129-140, 1992.

10

Feldman's scheme

e Create k amount of commitments (proof that a share is valid):

o Itruns once for a set of n shares. It is linear on the size of k (it generates kK commitments
for a set of n shares).

e Verify on each share that the set of kK commitments is valid:
o Itislinear on the size of k for a single share.
o This phase can be expanded to verify a whole subset/set, in which case:
m litis O(n * k) for verifying the set of n shares.
m Itis OkA2) for verifying a subset of k size.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427-437,
1987.

1

Feldman's scheme

e Worst-case complexity: This case occurs when a corrupted share is placed at the end
of the set/subset. The cost is: cost of verifying a single-share (O(k)) * (size of set V size of
subset): O(k *(n V k))

e Average-case complexity: Average case can be affected if the corruption probabilities
for each share vary (which is the case here as only a subset of clients can be
considered malicious): in this case, the average case depends on the probability of the
attacker of corrupting a set of shares and of the network on delivering them in a
specific order.

e Best-case complexity: This case occurs when there is only one corrupted share per
set/subset and it is placed at the start of the set/subset. The cost is: cost of verifying a
single-share (O(k)) * 1 * number of sets/subsets: O(1 *(1 V |{x Cn: |x| =k}|))

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427-437,
1987.

12

Measurements of Feldman’'s scheme

e Benchmarks in Rust of the secret sharing scheme (Shamir Secret Sharing)
with verifiability (the Feldman'’s scheme): the code is not optimized.

e The Rustimplementation can be found here:
https://github.com/claucece/secret-sharing-extra

e We defined the following parameters:
o threshold (which is k, the subset size)
o report size (which is n, the total size of the measurements reported)
o Inall cases by secret we used a string of 32 bytes in size.

e We report numbers when using curve25519/Ristretto and Sec256k1 for
the field and elliptic curve operations.

e We ran our benchmarking on a MacBook Pro with arm64, Darwin Kernel
Version 22.3.0, Apple M1 Max chip.

e We are using Rust with version 1.68.0.

13

https://github.com/claucece/secret-sharing-extra

Measurements of Feldman’'s scheme

| Report size (n) | Threshold (k) | Verification Time |

256 10 0.08
25 0.20
50 0.40
100 0.80
128 1.01
1024 10 0.32
25 0.79
50 1.58
100 3.17
128 4.04
1280 10 0.40
25 0.99
50 1.97
100 3.94
128 5.04

Using Curve25519/Ristretto. Numbers are reported in seconds

Measurements of Feldman’'s scheme

| Report size (n) | Threshold (k) | Verification Time |

256 10 0.04
25 0.08
50 0.16
100 0.31
128 0.40
1024 10 0.16
25 0.34
50 0.66
100 1.28
128 1.62
1280 10 0.20
25 0.43
50 0.84
100 1.61
128 2.05

Using sec256k1. Numbers are reported in seconds

Measurements of Feldman’'s scheme

| |

N
13
T
I

N

Time in sec.
[y
ot
T
|

—

Jid |

10 25 50 100
|Du 256 0051200768 Im 1024 |

o
o

o

Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The numbers that relate to
the colours represent the set of size n. This is using the times reported when using Curve25519/Ristretto.

16

Measurements of Feldman’'s scheme

T

Time in sec.

Time in sec.

- |
1+ e 8| |
0.8 g
6 |
0.6 |- |
4 |
0.4 N . I
2_
0.|II|I I I _ 0.|l|| |
| | I 50 I

T T
10 25 50 100 128 10 25 100 128
|08 curve25519/Ristretto [sec256k1 | |08 curve25519/ Ristretto Il sec256k1 |

Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The numbers that relate to the colours
represent the curve choice: Curve25519/Ristretto or sec256k1. The numbers are for n = 256 (left) and n = 2048 (right).

Smart STAR-VSS algorithm

1. Perform the recovery functionality first on a subset x. of k size. If it fails on
the subset, it runs the verification of that single subset x..
2. The verification algorithm will remove the invalid shares (the subset r of

x), and return a subset of size k- |r|.
3. Thereturned subset of size k - |r| can be used to construct a k size
subset (by fetching w shares from the set y of n size sothat k- |r| + |w| =

k), and perform recovery again.

e Arrive to a better time complexity of the overall scheme.

18

Lightweight Techniques for Private Heavy Hitters: POPLAR

e POPLAR [BBC+21] uses incremental distributed point functions, a
cryptographic primitive that builds on standard distributed point

functions (DPFs).
o Each client holds a /-bit string and a set of servers aggregates them.

e Costislinearin /: length (in bits) of the string to search for.

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight
techniques for private heavy hitters. pages 762-776, 2021.

19

Measurements of POPLAR

e Benchmarks in Rust, using the measurements framework as defined in
https://github.com/henrycg/heavyhitters

e The code compiles only for a older Rust version (we are using, hence, 1.47.0) on
a older MacBook Pro 12.3.1 with 2.3 GHz Dual-Core Intel Core i5 (model
15-7360U) with x86 64.

e This makes the POPLAR measurements perhaps not as accurate as the ones
taken for the VSS scheme.

e Ongoing work to “update” the POPLAR rust code.

e Measures the running time from the moment after the servers collect the last
incremental DPF keys from the clients until the servers produce their output.

e |t tests both over 256-bit length strings and 512-bit length strings (we couldn’t
compile the code with longer strings).

20

https://github.com/henrycg/heavyhitters

Measurements of POPLAR

Numbers are reported in seconds. The threshold here represents that more than 0.01% clients hold a

specific string.

Input size | Client requests | Threshold | Total Time

256 256 0.1% 5.51
512 0.1% 16.96
768 0.1% 36.15
1024 0.1% 55.86
1280 0.1% 86.42
1536 0.1% 126.58
1792 0.1% 155.29

512 256 0.1% 13.88
512 0.1% 38.58
768 0.1% 76.27
1024 0.1% 130.00
1280 0.1% 171.00
1536 0.1% 294.67
1792 0.1% 332.42

21

Measurements of POPLAR

150 - &

100 -

Time in sec.

50

256 512 768 1024

Oo2s60m512

Comparison of benchmarks: x-axis states the number of client request, y-axis states the times (in
seconds). The numbers that relate to the colours represent the input size |.

22

Conclusions

e STAR with verifiability (STAR-VSS) is efficient for k > 70 and k < 128~ (useful values in
practice).

e STAR with verifiability (STAR-VSS) is efficient depending on the curve/field chosen:
sec256k1 is faster than curve25519/ristretto.

e The performance of POPLAR is sensitive to the size of the message, while STAR is not

e POPLAR performs better than STAR-VSS given

o alarge % of malicious inputs
o large values of k
o small messages

e Itis difficult to properly compare the schemes as they grow depending on different

parameters:
o Both, however, are useful in practice.

23

Future work

e Measure the whole STAR functionality with VSS — probably not much
difference
e Update the POPLAR codebase — perform benchmarks in the libprio rust

code
e Formalise the verification scheme in the same formal framework as the

ADSS one
e Formalise and present the results of scheme with error-correction that
arrives to O(log n)

e Ongoing research and engineering work!

24

THANK YOU!

