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Notation

● k is the threshold used for performing server-side aggregation.
● n is the total report size submitted by C clients.
● C is the set of all clients.
● S is the aggregation server.
● O is the randomness server used in STAR.
● m is a message to secret-share.
● t is an integer ∈ N that states in POPLAR that a string σ appears in a list 

(a1, . . . ac) more than t times.
● σ is a string to search for in a list.
● l is the length of σ.
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STAR

● Each client constructs a ciphertext by encrypting their measurement (and 
any auxiliary data) using an encryption key derived deterministically from 
randomness (derived, in turn, from the measurement)

● The client then sends: 
a. the ciphertext
b. a k-out-of-n secret share of the randomness used to derive the encryption key
c.  a deterministic tag informing the server which shares to combine

● The aggregation server groups reports with the same tag, and recovers 
the encryption keys from those subsets of size ≥ k
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STAR

STAR is a scheme that uses:

● An algorithm that generates deterministic randomness: OPRFs, Hashes, 
AES-based…

● Secret-sharing scheme
● Sorting algorithm
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Taken from the ACM-CSS, 2022 publication: “STAR: Secret Sharing for Private Threshold Aggregation 
Reporting” by Alex Davidson, Pete Snyder, E.B. Quirk, Joseph Genereux, Bejamin Livshits, Hamed Haddadi
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STAR

Aggregation computational times is dependent on:

● Secret-sharing algorithm: 
○ STAR uses a “adept secret-sharing (ADSS)” [BDR20] scheme
○ Share generation:  sharing an m-byte message M takes O(m) time and, more concretely, 

about the amount of time to symmetrically encrypt and hash M
○ Secret recovery: Message recovery takes the same time as sharing
○ The scheme can be adapted to perform error-correction but it becomes exponential on 

the amount of shares passed to the recovery procedure (worst-case of 2^n)

[BDR20] Mihir Bellare, Wei Dai, and Phillip Rogaway. Reimagining secret sharing: Creating a safer and 
more versatile primitive by adding authenticity, correcting errors, and reducing randomness 
requirements. 2020(4):461–490, October 2020.
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Malicious shares and malicious clients

Not having error-correction (or verifiability) opens an attack against the STAR 
protocol. 

● There exists a set x of malicious clients that corrupt j amount of shares. 
● The recovery procedure will be unable to pinpoint which share is invalid 

(corrupted): the recovery procedure will halt and the whole batch of k size 
will be discarded. 

● This gives the possibility for malicious clients to perform DoS attacks with 
the goal of discarding sets of honest measurements. 
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Solutions

● Use ADSS with error-correction → can be expensive
● Use a secret sharing scheme with verifiability (Feldman’s scheme [Fel87] 

or Pedersen scheme [Ped92])
● Perform error-correction with a different construction which is the subject 

of a publication under review. In the work we arrive to a construction that 
achieves O(log n)

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427–437, 1987.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. pages 
129–140, 1992.
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Feldman’s scheme

● Create k amount of commitments (proof that a share is valid):
○ It runs once for a set of n shares. It is linear on the size of k (it generates k commitments 

for a set of n shares).

● Verify on each share that the set of k commitments is valid:
○ It is linear on the size of k for a single share. 
○ This phase can be expanded to verify a whole subset/set, in which case:

■ Iit is O(n ∗ k) for verifying the set of n shares.
■ It is O(k^2) for verifying a subset of k size.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427–437, 
1987.
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Feldman’s scheme

● Worst-case complexity: This case occurs when a corrupted share is placed at the end 
of the set/subset. The cost is: cost of verifying a single-share (O(k)) * (size of set ∨ size of 
subset): O(k ∗ (n ∨ k))

● Average-case complexity: Average case can be affected if the corruption probabilities 
for each share vary (which is the case here as only a subset of clients can be 
considered malicious): in this case, the average case depends on the probability of the 
attacker of corrupting a set of shares and of the network on delivering them in a 
specific order.

● Best-case complexity: This case occurs when there is only one corrupted share per 
set/subset and it is placed at the start of the set/subset. The cost is: cost of verifying a 
single-share (O(k)) * 1 * number of sets/subsets: O(1 ∗ (1 ∨ |{x ⊂ n : |x| = k}|))

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing. pages 427–437, 
1987.
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Measurements of Feldman’s scheme

● Benchmarks in Rust of the secret sharing scheme (Shamir Secret Sharing) 
with verifiability (the Feldman’s scheme): the code is not optimized. 

● The Rust implementation can be found here: 
https://github.com/claucece/secret-sharing-extra 

● We defined the following parameters: 
○ threshold (which is k, the subset size)
○ report size (which is n, the total size of the measurements reported)
○ In all cases by secret we used a string of 32 bytes in size. 

● We report numbers when using curve25519/Ristretto and Sec256k1 for 
the field and elliptic curve operations. 

● We ran our benchmarking on a MacBook Pro with arm64, Darwin Kernel 
Version 22.3.0, Apple M1 Max chip. 

● We are using Rust with version 1.68.0.
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Measurements of Feldman’s scheme

Using Curve25519/Ristretto. Numbers are reported in seconds 14



Measurements of Feldman’s scheme

Using sec256k1. Numbers are reported in seconds 15



Measurements of Feldman’s scheme

Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The numbers that relate to 
the colours represent the set of size n. This is using the times reported when using Curve25519/Ristretto.
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Measurements of Feldman’s scheme

Comparison of benchmarks: x-axis states the threshold sizes, y-axis states the times. The numbers that relate to the colours 
represent the curve choice: Curve25519/Ristretto or sec256k1. The numbers are for n = 256 (left) and n = 2048 (right).
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Smart STAR-VSS algorithm

1. Perform the recovery functionality first on a subset xi of k size. If it fails on 
the subset, it runs the verification of that single subset xi.

2. The verification algorithm will remove the invalid shares (the subset r of 
xi), and return a subset of size k − |r|.

3. The returned subset of size k − |r| can be used to construct a k size 
subset (by fetching w shares from the set y of n size so that k − |r| + |w| = 
k), and perform recovery again.

● Arrive to a better time complexity of the overall scheme.
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Lightweight Techniques for Private Heavy Hitters: POPLAR

● POPLAR [BBC+21] uses incremental distributed point functions, a 
cryptographic primitive that builds on standard distributed point 
functions (DPFs). 
○ Each client holds a l-bit string and a set of servers aggregates them. 

● Cost is linear in l: length (in bits) of the string to search for.

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight 
techniques for private heavy hitters. pages 762–776, 2021.
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Measurements of POPLAR

● Benchmarks in Rust, using the measurements framework as defined in 
https://github.com/henrycg/heavyhitters 

● The code compiles only for a older Rust version (we are using, hence, 1.47.0) on 
a older MacBook Pro 12.3.1 with 2.3 GHz Dual-Core Intel Core i5 (model 
I5-7360U) with x86 64. 

● This makes the POPLAR measurements perhaps not as accurate as the ones 
taken for the VSS scheme.

● Ongoing work to “update” the POPLAR rust code.
● Measures the running time from the moment after the servers collect the last 

incremental DPF keys from the clients until the servers produce their output. 
● It tests both over 256-bit length strings and 512-bit length strings (we couldn’t 

compile the code with longer strings).
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Measurements of POPLAR

Numbers are reported in seconds. The threshold here represents that more than 0.01% clients hold a 
specific string. 21



Measurements of POPLAR

Comparison of benchmarks: x-axis states the number of client request, y-axis states the times (in 
seconds). The numbers that relate to the colours represent the input size l. 22



Conclusions

● STAR with verifiability (STAR-VSS) is efficient for k > 10 and k < 128~ (useful values in 
practice).

● STAR with verifiability (STAR-VSS) is efficient depending on the curve/field chosen: 
sec256k1 is faster than curve25519/ristretto.

● The performance of POPLAR is sensitive to the size of the message, while STAR is not 
● POPLAR performs better than STAR-VSS given 

○ a large % of malicious inputs
○ large values of k
○ small messages 

● It is difficult to properly compare the schemes as they grow depending on different 
parameters:
○ Both, however, are useful in practice.
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Future work

● Measure the whole STAR functionality with VSS → probably not much 
difference

● Update the POPLAR codebase → perform benchmarks in the libprio rust 
code

● Formalise the verification scheme in the same formal framework as the 
ADSS one

● Formalise and present the results of scheme with error-correction that 
arrives to O(log n)

● Ongoing research and engineering work!
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Thank you!
@claucece


