
Secure Partitioning Protocols
Phillipp Schoppmann – IETF 116

Background: Aggregate Statistics Measurements

…

MPC Cluster

Clients

Background: Aggregate Statistics Measurements

…

MPC Cluster

Encrypted Reports

Clients

Background: Aggregate Statistics Measurements

…

MPC Cluster

Encrypted Reports

Clients

Background: Aggregate Statistics Measurements

…

MPC Cluster Aggregate Result

Encrypted Reports

Clients

Sharding MPC Clusters

Challenge: How to partition reports across shards, s.t. all reports of the same client end up
in the same shard?

Goals

● Low overhead: Blow up communication per client by a small factor
● Low round complexity
● Partitioning must not affect correctness / utility of downstream computation

Assumptions

● Bound M on the number of contributions per client
● Lots of clients (billions), few shards (thousands)

Threat Model

● Two (or more) non-colluding servers
● All parties are assumed to misbehave (as long as one server remains honest)
● Output of partitioning protocol must be differentially private

Threat Model

.

Threat Model

.

Adversary’s View

Threat Model

View

Differentially Private Views

Client i’s data changed

Pr() ≤ exp(ε) · Pr(’) + δView View

Blueprint: Partitioning from Distributed OPRFs

(i, v)

i: index / client identifier
v: value / payload

Client Server 1 Server 2

K

Blueprint: Partitioning from Distributed OPRFs

Enc2(i),
Enc1,2(v)

(i, v)

i: index / client identifier
v: value / payload
Enc: Encryption scheme that allows homomorphic evaluation of PRF, e.g. ElGamal or Dodis-Yampolski

Client Server 1 Server 2

Add
dummies

K

Blueprint: Partitioning from Distributed OPRFs

Enc2(i),
Enc1,2(v)

(i, v)

Enc2(FK(i)),
Enc1,2(v)

Client Server 1 Server 2

Add
dummies

Map FK(i)
to partition
for Enc1,2(v)

K

i: index / client identifier
v: value / payload
Enc: Encryption scheme that allows homomorphic evaluation of PRF, e.g. ElGamal or Dodis-Yampolski

Dense Partitioning: OPRF Output = Shard ID

Assume there are exactly S shards, and let [S] be the range of FK.

(i, v)

Client Server 1 Server 2

K

i: index / client identifier
v: value / payload
FK: ID -> [S]

Dense Partitioning: OPRF Output = Shard ID

Assume there are exactly S shards, and let [S] be the range of FK.

Enc2(i),
Enc1,2(v)

(i, v)

Client Server 1 Server 2

K

i: index / client identifier
v: value / payload
FK: ID -> [S]

Add dummies
to every
possible Fk(i)

Dense Partitioning: OPRF Output = Shard ID

Assume there are exactly S shards, and let [S] be the range of FK.

Enc2(i),
Enc1,2(v)

(i, v)

Enc2(FK(i)),
Enc1,2(v)

Client Server 1 Server 2

K

i: index / client identifier
v: value / payload
FK: ID -> [S]

Add dummies
to every
possible Fk(i)

Use FK(i) as
shard ID

Dense Partitioning: Adding Dummies

S

d1~TSDLap(𝜆, t)

d2~TSDLap(𝜆, t)
dS~TSDLap(𝜆, t)

…

M: Upper bound on the number of ciphertexts with the same index / from the same client
S: Number of shards
TSDLap(𝜆, t): Truncated, shifted, discrete Laplace distribution with mean t and scale 𝜆

Expected #dummies per bucket for ε = 0.5 and δ = 10-11: 49M per server

Sparse Partitioning: OPRF Output = Random Client ID

● If the OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.

● Allows local per-client aggregation (e.g., using Homomorphic Encryption)

(i, v) K

i: index / client identifier
v: value / payload
FK: ID -> {0,1}σ

Sparse Partitioning: OPRF Output = Random Client ID

● If the OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.

● Allows local per-client aggregation (e.g., using Homomorphic Encryption)

Enc2(i),
Enc1,2(v)

(i, v) K

i: index / client identifier
v: value / payload
FK: ID -> {0,1}σ

Obliviously
add dummies
to histogram

Sparse Partitioning: OPRF Output = Random Client ID

● If the OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.

● Allows local per-client aggregation (e.g., using Homomorphic Encryption)

Enc2(i),
Enc1,2(v)

(i, v)

Enc2(FK(i)),
Enc1,2(v)

K

i: index / client identifier
v: value / payload
FK: ID -> {0,1}σ

Obliviously
add dummies
to histogram

● Map FK(i) to
partition for
Enc1,2(v);

● Perform local
aggregation

Assigning Ciphertexts to Shards
N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << ⌈N’/S⌉, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For ε = 0.5 and δ = 10-11, N’/N = 1.1

⌈N’/S⌉

S

M’

…

Assigning Ciphertexts to Shards
N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << ⌈N’/S⌉, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For ε = 0.5 and δ = 10-11, N’/N = 1.1

⌈N’/S⌉

ind1

S

M’

…

Assigning Ciphertexts to Shards
N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << ⌈N’/S⌉, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For ε = 0.5 and δ = 10-11, N’/N = 1.1

⌈N’/S⌉

ind1

ind2

S

M’

…

Assigning Ciphertexts to Shards
N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << ⌈N’/S⌉, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For ε = 0.5 and δ = 10-11, N’/N = 1.1

⌈N’/S⌉

ind1

ind2

ind3

S

M’

…

ind4

Assigning Ciphertexts to Shards
N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << ⌈N’/S⌉, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For ε = 0.5 and δ = 10-11, N’/N = 1.1

⌈N’/S⌉

ind1

ind2

ind3

S

M’

…

Conclusion

● Distributed OPRFs allow for efficient sharding protocols.
● When the number of shards is much smaller than the number of clients, the

overhead is negligible.
● For a slightly larger (10%) overhead, we can enable local aggregation at one of

the servers. Example application: Sparse histogram computation [1].

[1] Bell, James, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and Phillipp Schoppmann. "Distributed,
Private, Sparse Histograms in the Two-Server Model." In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 307-321. 2022.

Next Steps

● General interest from the working group in secure partitioning?
● Other protocols or settings where this might be useful?
● Do we need additional properties (e.g., keep the order of inputs)?

https://github.com/patcg-individual-drafts/ipa/issues/49

