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Background: Aggregate Statistics Measurements
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Sharding MPC Clusters
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Challenge: How to partition reports across shards, s.t. all reports of the same client end up
in the same shard?




Goals

e Low overhead: Blow up communication per client by a small factor
e Low round complexity
e Partitioning must not affect correctness / utility of downstream computation

Assumptions

e Bound M on the number of contributions per client
e Lots of clients (billions), few shards (thousands)



Threat Model

e Two (or more) non-colluding servers
e All parties are assumed to misbehave (as long as one server remains honest)
e Output of partitioning protocol must be differentially private
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Differentially Private Views
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Blueprint: Partitioning from Distributed OPRFs
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i: index / client identifier
v: value / payload
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Enc: Encryption scheme that allows homomorphic evaluation of PRF, e.g. EIGamal or Dodis-Yampolski
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Dense Partitioning: OPRF Output = Shard 1D

Assume there are exactly S shards, and let [S] be the range of F,.
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v: value / payload
FK: ID ->[S]
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Assume there are exactly S shards, and let [S] be the range of F,.
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Dense Partitioning: Adding Dummies

M: Upper bound on the number of ciphertexts with the same index / from the same client

S: Number of shards
TSDLap(4, t): Truncated, shifted, discrete Laplace distribution with mean t and scale 4

Expected #dummies per bucket for € = 0.5 and & = 10™": 49M per server
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Sparse Partitioning: OPRF Output = Random Client ID

e [fthe OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.
e Allows local per-client aggregation (e.g., using Homomorphic Encryption)
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Sparse Partitioning: OPRF Output = Random Client ID

e [fthe OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.
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Assigning Ciphertexts to Shards

N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << [N’/S'1, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For € = 0.5 and 6 =10™ N’/N =11
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Conclusion

e Distributed OPRFs allow for efficient sharding protocols.

e When the number of shards is much smaller than the number of clients, the
overhead is negligible.

e For aslightly larger (10%) overhead, we can enable local aggregation at one of
the servers. Example application: Sparse histogram computation [1].

[1] Bell, James, Adria Gascén, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and Phillipp Schoppmann. "Distributed,
Private, Sparse Histograms in the Two-Server Model." In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security, pp. 307-321. 2022.



Next Steps

e General interest from the working group in secure partitioning?
e Other protocols or settings where this might be useful?
e Do we need additional properties (e.g., keep the order of inputs)?



https://github.com/patcg-individual-drafts/ipa/issues/49

