Secure Partitioning Protocols

Phillipp Schoppmann — IETF 116

Background: Aggregate Statistics Measurements

MPC Cluster =

0 A0

e 00LC :

Background: Aggregate Statistics Measurements

MPC Cluster =

0 A0

Encrypted Reports

Clients

Background: Aggregate Statistics Measurements

MPC Cluster

Hﬂlﬂlﬂ\
S
00— D

Encrypted Reports

Clients

Background: Aggregate Statistics Measurements

MPC Cluster

- [} Aggregate Result

}II]I\
7
00—

Encrypted Reports

My

Sharding MPC Clusters

m,
i
W,
i
m,
o

Challenge: How to partition reports across shards, s.t. all reports of the same client end up
in the same shard?

Goals

e Low overhead: Blow up communication per client by a small factor
e Low round complexity
e Partitioning must not affect correctness / utility of downstream computation

Assumptions

e Bound M on the number of contributions per client
e Lots of clients (billions), few shards (thousands)

Threat Model

e Two (or more) non-colluding servers
e All parties are assumed to misbehave (as long as one server remains honest)
e Output of partitioning protocol must be differentially private

) «—— =
== ==
N _A

Threat Model

Threat Model

Adversary’s View

= =
= =
== =

Threat Model

View
-/O

Differentially Private Views

Pr(, view 1)< exp(e) - Pr(, view ")+ &

_J

Client i’'s data changed

Blueprint: Partitioning from Distributed OPRFs

Client Server 1 Server 2
| oo | =)
= | o |
== ==

(i, v) K

i: index / client identifier
v: value / payload

Blueprint: Partitioning from Distributed OPRFs

Client Server 1 Server 2
S —=
SLEU == (==
(i, v) K
Add
dummies

i: index / client identifier
v: value / payload
Enc: Encryption scheme that allows homomorphic evaluation of PRF, e.g. EIGamal or Dodis-Yampolski

Blueprint: Partitioning from Distributed OPRFs

Client Server 1 Server 2
Enc, (i) ES Enc,) o,
SR ==L P, ==
(i, v) K &
Add . Map F.(i)
dummies to partition

for Encu(v)

i: index / client identifier
v: value / payload
Enc: Encryption scheme that allows homomorphic evaluation of PRF, e.g. EIGamal or Dodis-Yampolski

Dense Partitioning: OPRF Output = Shard 1D

Assume there are exactly S shards, and let [S] be the range of F,.

Client Server 1 Server 2
= =
=) =)
== ==

(i, v) K

i: index / client identifier
v: value / payload
FK: ID ->[S]

Dense Partitioning: OPRF Output = Shard 1D

Assume there are exactly S shards, and let [S] be the range of F,.

Client Server 1 Server 2

Encz(i),
Encu(v) —
(i, v) K \

Add dummies
to every
i index / client identifier possible F(i)
v: value / payload
F 1D ->[S]

Dense Partitioning: OPRF Output = Shard 1D

Assume there are exactly S shards, and let [S] be the range of F,.

Client Server 1 Server 2
Enc,(i), - Enc,(F, (i), -
Enc,,(v) Enc, ,(v) S —
v N
Add dummies
to every
i index / client identifier possible F(i)

v: value / payload
F 1D ->[S]

Use F (i) as
shard ID

Dense Partitioning: Adding Dummies

M: Upper bound on the number of ciphertexts with the same index / from the same client

S: Number of shards
TSDLap(4, t): Truncated, shifted, discrete Laplace distribution with mean t and scale 4

Expected #dummies per bucket for € = 0.5 and & = 10™": 49M per server

d,~TSDLap(%, t)

d~TSDLap(4, t)

d,~TSDLap(4, t)

Sparse Partitioning: OPRF Output = Random Client ID

e [fthe OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.
e Allows local per-client aggregation (e.g., using Homomorphic Encryption)

= ==

| =
D == ==
(i, v) K

i: index / client identifier
v: value / payload
FK: ID ->{0,1)°

Sparse Partitioning: OPRF Output = Random Client ID

e [fthe OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.
e Allows local per-client aggregation (e.g., using Homomorphic Encryption)

Enc.(i) E=) | o
ZARM E=) E=)
e =
(i, v) K
Obliviously
add dummies
i index / client identifier to histogram

v: value / payload
F. 1D ->{01F

Sparse Partitioning: OPRF Output = Random Client ID

e [fthe OPRF codomain is large enough to make collisions unlikely, we can use
the OPRF outputs as a pseudorandom client identifier.
e Allows local per-client aggregation (e.g., using Homomorphic Encryption)

Enc, (i), O ——
e S e
9 ‘ A
Obliviously e MapF (i)to
add dummies partition for
i index / client identifier to histogram Enc, ,(v);
v: value / payload e Perform local
F. 1D ->{01F aggregation

Assigning Ciphertexts to Shards

N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << [N’/S'1, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For € = 0.5 and 6 =10™ N’/N =11

o N N e

IN'/ST <

Assigning Ciphertexts to Shards

N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << [N’/S'1, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For € = 0.5 and 6 =10™ N’/N =11

o N N e

IN'/ST <

ind

Assigning Ciphertexts to Shards

N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << [N’/S'1, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For € = 0.5 and 6 =10™ N’/N =11

o N N e

IN'/ST <

Assigning Ciphertexts to Shards

N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << [N’/S'1, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For € = 0.5 and 6 =10™ N’/N =11

o N N e

IN'/ST <

Assigning Ciphertexts to Shards

N’: Number of ciphertexts after adding dummies
M’: Upper bound on the number of ciphertexts with the same index
S: Number of shards

Observation: As long as M’ << [N’/S'1, the overhead will be small in practice.
But: N’ might still be significantly larger than N. For € = 0.5 and 6 =10™ N’/N =11

o N

IN'/ST <

Conclusion

e Distributed OPRFs allow for efficient sharding protocols.

e When the number of shards is much smaller than the number of clients, the
overhead is negligible.

e For aslightly larger (10%) overhead, we can enable local aggregation at one of
the servers. Example application: Sparse histogram computation [1].

[1] Bell, James, Adria Gascén, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana Raykova, and Phillipp Schoppmann. "Distributed,
Private, Sparse Histograms in the Two-Server Model." In Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security, pp. 307-321. 2022.

Next Steps

e General interest from the working group in secure partitioning?
e Other protocols or settings where this might be useful?
e Do we need additional properties (e.g., keep the order of inputs)?

https://github.com/patcg-individual-drafts/ipa/issues/49

