
Batched Token
Issuance Protocol
draft-robert-privacypass-batched-tokens

IETF116, Yokohama
Raphael Robert

1

Motivation

Privately Verifiable Tokens can be expensive when issued in

high numbers.

The primitive choice is conservative (P384) and the protocol

doesn’t make use of efficient DLEQ ZK proofs

2

How?

1. Issuing multiple tokens at once in response to a single

TokenChallenge, thereby reducing the size of the proofs

required for multiple tokens.

2. Improving server and client issuance efficiency by

amortizing the cost of the VOPRF proof generation and

verification, respectively.

3

Token request

struct {
 uint16_t token_type = 0x0001; // Privately Verifiable Token
 uint8_t truncated_token_key_id;
 uint8_t blinded_msg[Ne];
} TokenRequest;

struct {
 uint16_t token_type = 0xF91A; // Batched Token
 uint8_t token_key_id;
 BlindedElement blinded_elements<0..2^16-1>;
} TokenRequest;

struct {
uint8_t blinded_element[Ne];

} BlindedElement;

4

Token response

struct {
 uint8_t evaluate_msg[Ne];
 uint8_t evaluate_proof[Ns+Ns];
} TokenResponse;

struct {
 EvaluatedElement evaluated_elements<0..2^16-1>;
 uint8_t evaluated_proof[Ns + Ns];
} TokenResponse;

struct {
uint8_t evaluated_element[Ne];

} EvaluatedElement;

5

Security considerations

“A side-effect of the OPRF protocol variants in this document is that they allow

instantiation of an oracle for constructing static DH samples; see [BG04] and

[Cheon06]. These attacks are meant to recover (bits of) the server private key.

Best-known attacks reduce the security of the prime-order group instantiation by

log_2(Q)/2 bits, where Q is the number of BlindEvaluate calls made by the attacker.”

Mitigation strategies:

- Limit issuance (rate-limit BlindEvaluate)

- Rotate keys regularly

- Define token type with larger group

6

Performance chart (ristretto255)

Publicly Verifiable Privately Verifiable Batched (100)

Server: Generate key pair 122 960 µs 475 µs 37 µs

Client: Issue token request 264 µs 685 µs 52 µs

Server: Issue token response 1 349 µs 2 568 µs 79 µs

Client: Issue token 152 µs 3 480 µs 125 µs

Server: Redeem token 147 µs 725 µs 50 µs

Measured on an M1 using RustCrypto

7

Implementations

Currently two implementations with interop test vectors

exist:

- privacypass in Rust

- pat-go in Go

8

https://github.com/raphaelrobert/privacypass
https://github.com/cloudflare/pat-go

