
Resetting and Closing
Streams

Marten Seemann
IETF 116, Yokohama

Problem Statement
1. The WebTransport Use Case: "I really need to get the Session ID through"

2. The Relaying Proxy: "Oops, the upstream server died"

a. But the proxy wants to send the bytes it has received and signal an error

b. See https://github.com/quicwg/base-drafts/issues/3300

https://github.com/quicwg/base-drafts/issues/3300

Victor's proposal:
RESET_STREAM_WITH_PAYLOAD
● https://github.com/marten-seemann/draft-seemann-quic-reliable-stream-reset/pull/2

● basic idea: add some payload to a RESET_STREAM frame

○ doesn't need to correspond to any data sent on the stream

● requires changing both receiver and sender QUIC stream API

● cannot solve the relaying use case

https://github.com/marten-seemann/draft-seemann-quic-reliable-stream-reset/pull/2

RELIABLE_RESET_STREAM
● RELIABLE_RESET_STREAM: the name is confusing

Sometimes it looks like a RESET!

Reliable Size Final Size

Send Position

100 200

close stream at
{

Reliable Size: 100,
Final Size: 200,

}

But it's actually more like a FIN!

Reliable Size

close stream at
{

Reliable Size: 100,
Final Size: 100,

}

100

Implementation Strategy:

don't send STREAM_CLOSE before having

sent all the reliable bytes (like a FIN)

30

Send Position

Stream API (sending side)

class SendStream:

 ...

def write():

// write data to the stream buffer

 def commit():

// commit to transmit all bytes written so far

Receiver Side
Receiver: don't act on the Reliable Size before having deliver all the reliable bytes

Just like you'd do for a FIN bit!

Stream API (receiving side)

RELIABLE_RESET_STREAM

Maybe STREAM_CLOSE?

Implementation Status
● quic-go: ~80 LOC for the stream state machine changes

● quicly: ~50 LOC for the stream state machine changes

● quic-go and quicly successfully interop!

Next Steps
Adoption?

