
Revisiting QUIC Handshakes and TLS
Deployment: About Three Challenges

1

Marcin Nawrocki, Pouyan Fotouhi Tehrani, Raphael Hiesgen,
Jonas Mücke, Thomas C. Schmidt, Matthias Wählisch

{marcin.nawrocki, jonas.muecke, m.waehlisch}@fu-berlin.de
pouyan.fotouhi.tehrani@fokus.fraunhofer.de
{raphael.hiesgen, t.schmidt}@haw-hamburg.de

Methods, more results, more details? Read our paper! :)

2

[https://doi.org/10.1145/3555050.3569123]

https://doi.org/10.1145/3555050.3569123

Large TLS data triggers multiple RTTs.
 QUIC Handshake Challenge 1

3

Multi-RTT prevents amplification attacks but is inefficient.

4

Multi-RTT prevents amplification attacks but is inefficient.

5

We measure that 38% of QUIC domains exhibit multi-RTT handshakes.

Non-leaf certificates are large. Even median-sized chains
are likely to exceed anti-amplification limits.

6

Amplification limits given
common client Initial sizes.

Will future QUIC extensions make the situation worse?

● draft-ietf-quic-multipath: A Multipath QUIC connection starts with a regular QUIC
handshake. Adding new paths does not require additional certificate exchanges.
Same challenge ☺.

● draft-ietf-quic-version-negotiation: Compatible Version Negotiation prevents extra
RTT because of VERSION_NEG packets. The subsequent handshake process is as
usual and may still require Multi-RTT due to large TLS data. Same challenge ☺.

● draft-ietf-tls-hybrid-design: Hybrid key exchange in TLS 1.3 makes QUIC connections
quantum-proof. Recent implementations need additional 800 bytes for new secrets
in SERVER_HLO. Even worse ☹.

7

https://www.ietf.org/archive/id/draft-ietf-quic-multipath-03.html
https://www.ietf.org/archive/id/draft-ietf-quic-version-negotiation-14.html
https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-06.html
https://aws.amazon.com/blogs/security/enable-post-quantum-key-exchange-in-quic-with-the-s2n-quic-library/

Observation 1: QUIC was designed for low latency (1-RTT),
but multi-RTT are needed in the wild due to cert sizes.

8

Should we encourage TLS certificate compression?

Tackles only symptoms but is effective if available in client and server implementations.

Should we propose Best Current Practices for TLS in QUIC?
Make use of elliptic curve crypto, limit max. chain depths, max. SANs, …

No efficient resend strategy exists.
QUIC Handshake Challenge 2

9

Servers that experience incomplete handshakes assume
packet loss and resend packets, which can lead to high
amplification factors.

10

Servers that experience incomplete handshakes assume
packet loss and resend packets, which can lead to high
amplification factors.

11

Incomplete handshakes occur during, e.g., reflective DDoS attacks.
Retransmissions must comply with the 3x anti-amplification limit.

Triggering incomplete handshakes with Meta PoPs.

12

Triggering incomplete handshakes with Meta PoPs.

13

Observation 2: Resends easily contribute to reaching the
amplification limit.

14

Do we need a different strategy for incomplete handshakes?

An alternative strategy for incomplete handshakes could be:
i) server resends TLS data once, if data fits below 3x anti-amplification limit;

ii) then, server starts to validate the client with small probes, e.g., PING.

CDN setups optimize for low delays
but lead to larger handshake data.

QUIC Handshake Challenge 3

15

In several CDN deployments, the QUIC server can be
separate from the process that has access to TLS material.
This may add delay and disturb the client RTT estimation.

16

Can be sent instantly, good
indicator for minimum RTT.

Delay (+Δ) due to certificates not
managed by the content server.

Initial Message 1
ACK

(+Padding)

Initial Message 2
Server Hello
(+Padding)

TLS Cert
Server

Delay Δ Server
(QUIC)

TLS Cert
Store

CDNs deal with this by splitting server Initials …

17

Can be sent instantly, good
indicator for minimum RTT.

Delay (+Δ) due to certificates not
managed by the content server.

Initial Message 1
ACK

(+Padding)

Initial Message 2
Server Hello
(+Padding)

TLS Cert
Server

Delay Δ Server
(QUIC)

TLS Cert
Store

18

Can be sent instantly, good
indicator for minimum RTT.

Delay (+Δ) due to certificates not
managed by the content server.

Initial Message 2
Server Hello
(+Padding)

TLS Cert
Server

Delay Δ Server
(QUIC)

CDNs deal with this by splitting server Initials … and
responding instantly only with the ACK …

Initial Packet 1
ACK

(+Padding)

TLS Cert
Store

19

Can be sent instantly, good
indicator for minimum RTT.

Delay (+Δ) due to certificates not
managed by the content server.

TLS Cert
Store

Delay Δ Server
(QUIC)

… and then retrieve and deliver the certificate.

Initial Packet 1
ACK

(+Padding)

Initial Packet 2
Server Hello
(+Padding)

Δ

20

Can be sent instantly, good
indicator for minimum RTT.

Delay (+Δ) due to certificates not
managed by the content server.

TLS Cert
Store

Delay Δ Server
(QUIC)

Pro: This keeps ProbeTimeouts for RTT estimation low.
Con: But it leads to larger handshake data (>3x).

Initial Packet 1
ACK

(+Padding)

Initial Packet 2
Server Hello
(+Padding)

Δ

Observation 3: QUIC design does not account for
distributed certificate management, which skews minimal
RTT estimations.

21

How to enable a precise RTT estimation for all deployments?
E.g., sending endpoints could tag delayed packets and

receiving endpoints could exclude such packets from RTT estimations.

Conclusion – Where can the QUIC WG best help?

CDN setups optimize for low delays but lead to larger handshake data.

 → Would tagging of delayed packets enable a precise RTT estimation for all deployments?

No efficient resend strategy exists.

 → In case of incomplete handshakes, would small probes help instead of large resends?

Large TLS data triggers multiple RTTs.

 → Should we encourage TLS certificate compression?

 → Should we propose Best Current Practices for TLS in QUIC?

22

QUIC Handshake Classification API
(IETF 115 Hackathon)

[https://understanding-quic.net]
23

https://understanding-quic.net/

Backup

24

TLS data matters. Chains, large keys, alternative names,
…

25

Calculating the RESEND bytes

● TLS certificate chain (1 non-leaf, elliptic curve): 2200 bytes

● With TLS compression (0.73x): 1600 bytes

● TLS Server Hello and QUIC headers (300 bytes): 1900 bytes

● Resending (2x) … 3800 bytes

● … vs Client Initial (1300 bytes, 3x) 3900 bytes

26

PINGs during handshake will be probably padded…

QUIC MUST NOT be used if the network path cannot support a

maximum datagram size of at least 1200 bytes.

A client MUST expand the payload of all UDP datagrams carrying

Initial packets to at least the smallest allowed maximum

datagram size of 1200 bytes [...]

[...] a server MUST expand the payload of all UDP datagrams

carrying ack-eliciting Initial packets to at least the smallest

allowed maximum datagram size of 1200 bytes.

Ack-eliciting packet: A QUIC packet that contains frames other

than ACK, PADDING, and CONNECTION_CLOSE.

27

Triggering incomplete handshakes with Meta PoPs.

28

August 2022

October 2022

