Protocol Assisted Protocol (PASP)

draft-li-rtgwg-protocol-assisted-protocol-05

Zhenbin (Robin) Li, Shuanglong Chen, Zhen Tan, Yunan Gu,

IETF 116, Mar 2023
Yokohama
Overview

• Recapitulation
 • Why we want such a protocol
 • What do we want in such a protocol

• Updates since IETF 110
 • More use-cases from O&M perspective
Why an east-west assisted protocol is needed?

- Challenges of North-South methods
 - Large amount of data to be exported: There may be too many devices, protocols and data.
 - High performance requirements on the Controller or NMS to complete all these tasks

- User habits
 - Local configuration and maintenance, more convenient
 - Take time to be adapted to NMS/Controller
 - Need knowledge about various vendors

- Existing east-west methods in use:
 - RSVP-TE PathErr/ResvErr
 - BGP Notification
 - Other protocol-specific error-shooting mechanisms
Why a general assisted protocol is needed?

- If a routing protocol is failed by itself, it very likely cannot advertise its own maintenance information.

- Restrictions on maintenance mechanisms of the existing protocols
 - If more maintenance mechanisms were introduced, it might have much effect on the current operation, either in performance or complexity.
 - BGP extension of the Path attribute will have influence on the normal routing in parsing and route-selection performance.
 - RSVP extends the cause code for path setup failures. Only two ULONGs are available.

- Protocol extensibility:
 - Error-shooting mechanisms are protocol-specific, duplicate extensions
 - If a common protocol is used, it is more extensible and convenient to define and advertise related information.
PASP (Protocol assisted Protocol)

• A new semi-distributive semi-centralized approach
 • A generic “pipeline” for exchanging troubleshooting data of various protocols

• Designed for exchanging protocol related information between devices
 • Separates routing and non-routing data

• Merits
 • A uniform error-shooting way for all routing protocols, facilitates automatic troubleshooting
 • No additional information on routes, won’t affect existing routing system
 • More network-wide data accessible for individual device
 • Not relying on a centralized server
 • Less bandwidth & CPU pressure, comparing to a centralized data collection & analysis mechanism
Use Cases for Troubleshooting

Use Cases 1 - BGP route oscillation

- Send a request message to the oscillating route for oscillation source check
- Receiver send an ACK claims whether they are the oscillation sources, and send a further request until they get a ACK from the oscillation source

Use Cases 2 - RSVP-TE set up failure

- The failure device could actively send a notification with cause code to the ingress device

Use Cases 3 - Peer disconnection (for IGP/BGP/LDP/BFD)

- Device that suffers the disconnection could send a request message
- Device that triggers disconnection send an ACK with reason of disconnection, including manual shutdown, TCP down and etc.
More Use Cases (1)

➤ Use Cases 4 – Detecting Route Interruption
 • PASP could collecting route change history, so that rapid route interruptions can be detected. Certain data could be fetched up on request from a trusted source.

➤ Use Cases 5 – BGP Route No-advertise
 • Device that suffers from a no-advertise situation could send a request message with the specific IP.
 • Receiver will send an ACK with reason of no-advertise, including egress filters, no-advertise attribute and etc.

➤ Use Cases 6 – Route Abnormal
 • Device could send a request message with the specific IP to another device for abnormal situations
 • Receiver will send an ACK with situation code including nexthop unreachable, outbound interface down, suppression and etc.
More Use Cases (2)

➢ Use Cases 7 – Management protocol failures
 • O&M personnel could send a request on a neighbor device to the target device, asking for the reason of a login failure on a management protocol, such as SNMP or SSH.

➢ Use Cases 8 – Collecting other O&M Events
 • PASP could record O&M events, such as: IP-address conflict, memory leak and Etc.
 • Certain data could be fetched up on request from a trusted source, so that O&M personnel can get those information without checking every single devices.
Discussion

There are two possible options to implement PASP:
- Option 1. PASP is developed independently as a protocol
- Option 2. PASP reuses the existing protocol (GRASP)

<table>
<thead>
<tr>
<th></th>
<th>GRASP</th>
<th>PASP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision</td>
<td>The vision is a network that configures, heals, optimizes and protects itself.</td>
<td>Focuses on the exchange of east-west fault information about control-plane protocols. Assists fault locating and self-healing on the control plane.</td>
</tr>
<tr>
<td>Message Definition & Interaction Process</td>
<td>Try to reuse the defined messages and procedures of the GRASP protocol.</td>
<td>Defines a new PASP protocol</td>
</tr>
<tr>
<td>Scalability</td>
<td>High resource consumption persistent Connection</td>
<td>Flexible connection, relatively low resource consumption</td>
</tr>
<tr>
<td>Reliability</td>
<td>TCP / UDP(Need extension)</td>
<td>UDP (The application layer need supports)</td>
</tr>
<tr>
<td>Security</td>
<td>ACP</td>
<td>MD5</td>
</tr>
</tbody>
</table>
Next Step

• Welcome more comments and discussion

Thank You!