SATP Architecture
Updates & Overview

draft-hardjono-sat-architecture-03

IETF116 Yokohama

Thomas Hardjono, Martin Hargreaves, Ned Smith, Venkatraman Ramakrishna
Updates to Draft -03

• High level flow matches v16 of the annotated detailed flow diagram (in Github repo)

• Assumptions text added:
 • Gateway is trusted
 • Session-ID is derived from shared context between App1 and App2 – but out-of-scope for WG

• Request WG to adopt as Work Item

Annotated message flow diagram: https://bit.ly/3Lzeup1
Overview of SATP: Problem Statement

• Poor interoperability of Digital Asset Networks
 • Difficult to securely move assets across networks

• Poor scalability:
 • Bilateral agreements
 • Proprietary & weak cross-chain “bridges”

• Lack of standards for security
 • Increases risks and inhibits industry growth
Gateways Paradigm

SATP Architecture - IETF116
SATP Goal

• An interoperability protocol that permits the secure movement of a unique value-bearing data-object ("asset") from one network to another,

• while guaranteeing that the data-object is valid in one network only at any one time, and that

• the transfer is verifiable by an independent authorized 3rd party
Desirable Properties and Constraints

- *Support Private DLTs*: must work if one (or both) blockchain networks are private (opaque)
- *Support legacy infrastructures*: must work if one side is a Legacy System (e.g. mainframe; RTGS)
- *ACID properties of transfers*: atomicity, consistency, isolation, durability
Design Principles

• Opaque Resources principle:
 • The interior resources of each network is assumed to be opaque to (hidden from) external entities
 • Analog of the Autonomous Systems principle

• Externalization of Value principle:
 • Transfer protocol must be agnostic (oblivious) to the economic value of the digital asset being transferred
 • Analog of the End-to-End principle

• Autonomous Systems Principle
• End-to-End Principle
The Autonomous Systems (AS) Principle

• Independence of each network
 • Unambiguous network boundary/domain
 • Each network has a unique identification (AS number)
 • Must not rely on data or code located in other networks

• Standardized protocol between networks
 • Standardized higher-layer data format/semantics
 • Standardized cross-domain protocol (BGP)
The End-to-End Principle

• Function & context at the endpoints
 • Reliability requirements implemented at endpoints
 • Network oblivious to semantics of payload

• Payload data protection outside the network
 • Endpoints implement encryption, signatures, etc.

3 Stages of Protocol (Burn-Mint)

• Stage 1: Transfer Initiation:
 • Gateways agree on the asset to be transferred

• Stage 2: Lock Assertion & Receipt:
 • Asset Lock Assertion from sending Gateway

• Stage 3: Commitment Establishment
 • Three-Phase Commit (3PC) for ACID properties

Annotated message flow diagram: https://bit.ly/3Lzeup1
ACID Properties

• *Atomicity*: Transfer must either commit or entirely fail (failure means no change to asset ownership)

• *Consistency*: Transfer (commit or fail) always results in asset located in one blockchain network only

• *Isolation*: While transfer occurring, asset ownership cannot be modified (no double-spend)

• *Durability*: Once transaction committed, must remain so regardless of gateway crashes
Thank You and Q&A

Contact: hardjono@mit.edu
Blank

• Header 1