Inter-domain Source Address Validation (SAVNET) Architecture

Jianping Wu, Dan Li, Mingqing Huang, Li Chen, Nan Geng, Libin Liu, Lancheng Qin

Mar 29, 2023

Introduction

□ Inter-domain SAV is important for mitigating source address spoofing attacks

- Preventing traffic that forges other ASes' source addresses from entering the AS that deploys inter-domain SAV
- **D** However, existing inter-domain SAV mechanisms have limitations
 - •uRPF-related SAV mechanisms have improper block or improper permit problems
 - ACL-based SAV mechanisms have high operational overhead problems
- **D** To address the limitations,
 - Inter-domain source address validation (SAVNET) architecture provides a framework for developing new SAV mechanisms

Design Goals

Inter-domain SAVNET architecture aims to enhance accuracy and facilitate partial deployment with low operational overhead

□ Accurate SAV at peer and customer interfaces

Accurately learn the valid source addresses that should be permitted and block packets with the learned invalid or other unknown source addresses

□ Accurate SAV at provider interfaces

Accurately learn the invalid source addresses that should be blocked and permit packets with the learned valid or other unknown source addresses

D Automatic update

◆Adapt to dynamic networks and asymmetric routing scenarios automatically

□ Working in partial deployment

Provide protection for the source prefixes of deployed ASes in partial deployment scenario

Scope

Different from Version-00 which focuses on the specific new SAV mechanism, Version-01 focuses on high-level architecture

□ This draft focuses on

✦High-level architecture designs that enable an AS to generate accurate SAV rules by using SAV-related information from various sources

D This draft does not include

- Protocol designs or protocol extensions
- Detailed solutions for reducing operational overhead, since they should be considered in specific SAV mechanisms
- Detailed solutions for collecting and updating SAV-related information from different sources

D Basic idea

Consolidate SAV-related information from multiple sources
and generate SAV rules based on the SAV-related information
Collaboration

□ Main components

- ◆SAV-related information sources
- ◆SAV Information Manager (SIM)

◆SAV Information Base (SIB)

◆SAV table

D Basic idea

Other ASes ◆Consolidate SAV-related information from multiple sources Collaborative and generate SAV rules based on the SAV-related information Messages YANG SMP RIB ROA ASPA □ Main components AS Passive Acquired SAV-related information sources **Active Collaboration** Manual Configuration Information Information ◆SAV Information Manager (SIM) ◆SAV Information Base (SIB) SAV Information Manager (SIM) ◆SAV table SAV Information Base (SIB) SAV Table

SAV-related Information Sources

- □ SAV-related information that specifies the valid incoming interfaces for a source prefix can be learned from
 - Manual Configuration
 - SAV-related configurations from YANG, command-line interface (CLI), and protocols such as remote triggered black hole (RTBH) and Flowspec
 - Passive Acquired Information
 - ➤Topological and routing information from Routing Information Base (RIB), Routing Information Messages, RPKI ROA objects, and RPKI ASPA objects
 - Active Collaboration Information
 - ➢Real forwarding paths of prefixes transmitted by Collaborative Messages from other ASes
- □ All sources are optional depending on the availability of them and operational needs

D Basic idea

Other ASes ◆Consolidate SAV-related information from multiple sources Collaborative and generate SAV rules based on the SAV-related information Messages YANG CLI SMP RIB ROA ASPA □ Main components AS ◆SAV-related information sources Passive Acquired **Active Collaboration** Manual Configuration Information Information SAV Information Manager (SIM) SAV Information Manager (SIM) ◆SAV Information Base (SIB) ◆SAV table SAV Information Base (SIB)

SAV Table

SAV Information Manager (SIM)

□ Function #1

◆Maintain the Source Information Base (SIB) by consolidating SAV-related information collected from multiple sources

D Function #2

♦ Generate SAV rules to fill out the SAV table in data plane based on the SIB

D Basic idea

Consolidate SAV-related information from multiple sources
and generate SAV rules based on the SAV-related information
Colla

□ Main components

- ◆SAV-related information sources
- ◆SAV Information Manager (SIM)

◆SAV Information Base (SIB)

◆SAV table

SAV Information Base (SIB)

□ Data structure of SIB

- ◆Each row records the index, the prefix, the prefix's valid incoming interface, the prefix's incoming direction, and the corresponding information source
- ◆Different information sources may specify different incoming interfaces for the same prefix

AS 1 (P2P) AS 2	SAV Information Base for AS X						
(P1) (P2)	Index	Prefix	AS-level Interface	Direction	Information Source		
(C2P) Itf.1 Itf.2 (C2P)	0	P1	ltf.1	Provider	Collaborative Message, Routing Information Message		
AS X Itf.3 (P2P) AS 3	1	P1	ltf.2	Provider	Routing Information Message, RIB		
Itf.4 (P3)	2	P2	ltf.2	Provider	Manual Configuration		
(C2P)	3	P3	Itf.3	Peer	Collaborative Message, RPKI ROA objects, RPKI ASPA objects		
(C2P) AS 5 (P5)	4	P4	ltf.4	Customer	Collaborative Message		
AS 4 (C2P) (P5)	5	P4	ltf.5	Customer	Routing Information Message, RIB		
(P4)	6	P5	ltf.5	Customer	Routing Information Message, RIB		

SAV Information Base (SIB)

Data structure of SIB

- ◆Each row records the index, the prefix, the prefix's valid incoming interface, the prefix's incoming direction, and the corresponding information source
- Different information sources may specify different incoming interfaces for the same prefix
- How to identify the most accurate incoming interfaces from multiple information sources?
 - ◆Finer-grained information source can help generate more accurate SAV rules
 - Operators are allowed to specify how to use the SAV-related information in the SIB by their local configurations

D Basic idea

Consolidate SAV-related information from multiple sources and generate SAV rules based on the SAV-related information
Coll

□ Main components

- ◆SAV-related information sources
- ◆SAV Information Manager (SIM)

◆SAV Information Base (SIB)

SAV table

SAV Table

□ Data structure of SAV table

◆Each row (i.e., SAV rule) records the most accurate incoming interfaces for each learned source prefix

SAV Information Base for AS X					SAV Table for AS X		
Index	Prefix	AS-level Interface	Direction	Information Source	Source Prefix		
0	P1	ltf.1	Provider	Collaborative Message, Routing Information Message		Incoming Interface	
1	P1	ltf.2	Provider	Routing Information Message, RIB	P1	ltf.1	
2	P2	ltf.2	Provider	Manual Configuration	P2	ltf.2	
3	P3	ltf.3	Peer	Collaborative Message, RPKI ROA objects, RPKI ASPA objects	P3	ltf.3	
4	P4	ltf.4	Customer	Collaborative Message	P4	ltf.4	
5	P4	ltf.5	Customer	Routing Information Message, RIB	P5	ltf.5	
6	P5	ltf.5	Customer	Routing Information Message, RIB			

SAV Table

- By checking the source address and the actual incoming interface of each packet against the SAV table, the validity state of each packet can be considered "valid", "invalid", or "unknown"
 - ◆Packets with "valid " state should be permitted
 - Packets with "invalid" state should be blocked
 - Packets with "unknown" state can be blocked or permitted according to the SAV configurations
- □ More details about how to use the SAV table can be found in [draft-huang-savnet-sav-table]

Considerations

D Working in partial deployment

- Some information sources may not provide SAV-related information for all source prefixes in partial deployment scenario
- ♦New Inter-domain SAV mechanisms must support partial deployment

D Security considerations

- ◆Using active collaboration information faces the same security threats as those of BGP, including session security threats and content security threats
- ◆Existing BGP security mechanisms can be used to secure Collaborative Protocols
 - >An independent security mechanism is needed when some BGP security mechanisms are not widely deployed

Conclusion

D Define the high-level inter-domain SAVNET architecture

- ♦Use SAV-related information from multiple sources to generate accurate SAV rules
- **D** Leave open design space for new SAV mechanisms
 - ♦ How to select appropriate information sources?
 - How to collect and update the needed SAV-related information from selected sources?
 - ♦ How to use the SIB to identify the most accurate incoming interfaces?

Next Step

D Solicit comments and refine the draft

◆Many thanks to Igor Lubashev for the helpful revision suggestions

♦ Your comments are welcome!

D Seek cooperation

◆Refining the draft

◆ Detailed designs for the new inter-domain SAV mechanism

Thanks!

Backup slides

Collaborative Messages

D Basic idea

- ◆The Collaborative Messages propagate or originate the real forwarding paths of prefixes between the Collaborative Protocol Speakers in different ASes
- The detailed designs for collaborative messages and protocol extensions are in the works
 - Seek cooperation
 - ◆Carried out in the working groups responsible for the corresponding protocols

Three Validity States

□ "Valid" means

◆There is a source prefix in SAV table covering the source address of the packet, and the valid incoming interfaces cover the actual incoming interface of the packet

□ "Invalid" means

◆There is a source prefix in SAV table covering the source address of the packet, but the actual incoming interface of the packet does not match any valid incoming interface

□ "Unknown" means

◆There is no source prefix in SAV table covering the source address of the packet