
Current State of Affairs
Henk Birkholz

Meanwhile...

• Updated Internet-Draft
• An Architecture for Trustworthy and Transparent Digital Supply Chains
• Detailed Software Supply Chain Use Cases

• Related Internet-Drafts
• Countersigning COSE Envelopes in Transparency Services (Receipts)
• Concise Encoding of Signed Merkle Tree Proofs

https://datatracker.ietf.org/doc/draft-ietf-scitt-architecture/
https://datatracker.ietf.org/doc/draft-ietf-scitt-software-use-cases/
https://datatracker.ietf.org/doc/draft-birkholz-scitt-receipts/
https://datatracker.ietf.org/doc/draft-steele-cose-merkle-tree-proofs/

New Challenges

• Merkle Trees Proofs are not specific to SCITT or even services.
• New Challenge: Creating a Merke Tree Proof I-D that SCITT Receipts can be a

profile of
• The way how SCITT Signed Statements and SCITT Receipts are using COSE

in specific ways are not specializations of COSE-use only required
by SCITT.
• New Challenge: Creating a more generic way to profile the use of COSE for various

uses – one of them being the specific usage of COSE in SCITT
• All text about API specification is not specific to SCITT but of general

interest to all systems considering to use SCITT as building blocks.
• New Challenge: Creating a dedicated I-D specifying operations and a reference API

to address use case requirements (using all other SCITT I-Ds and maybe more!)

The Numbers & The Process

• PR #16 (Vast Terminology Overhaul) created 113 comments:
1. That's a lot!
2. There is no doubt that there is interest in the topic.
3. The editors were able to extract ~30 github issues from that input.
4. If YOUR comment of interest was lost in transition, PLEASE raise an issue by

your own again. The whole WG, all authors, contributors, and supports
value your feedback. If something got, lost that was not intentional.
(we are trying to keep up with the immense feedback, but please help!)

5. In the future, try to create individual PRs, or create Suggestions on a PR.
(If you are not sure how to do that, the editors and chairs will help every
single contributor getting familiar with that procedure!)

And then again... Terminology

If you can't say it right, how should you get it right?

• The thing that an Issuer creates about a supply chain thing of interest?
• An Issuer produces a Signed Statement (message to be added to Append-Only Log) from

Statements about supply chain Artifacts
• Registry, Ledger, Log... the thing all Signed Statements will end up in?

• Append-Only Log
• A Signed Statement that carries a corresponding Receipt in it's unprotected header?

• Transparent Statement
• Next Step: Getting consensus on Artifact (the subject of interest moving along

the supply chain that the Issuer maintains statements about)
• Next Step: Mapping and/or aligning the semantics of RATS Endorsements with SW

Supply Chain Audit Results

Software Supply Chain Uses Cases
Kay Williams

Use Cases

• Verification that Signing Certificate is Authorized by Supplier
• Multi Stakeholder Evaluation of a Released Software Product
• Security Analysis of a Software Product
• Promotion of a Software Component by multiple entities
• Post-Boot Firmware Provenance
• Auditing of Software Product
• Authentic Software Components in Air-Gapped Infrastructure
• Firmware Delivery to large set of constrained IoT Devices
• Software Integrator assembling a software product for a smart car
Detailed Software Supply Chain Use Cases

https://datatracker.ietf.org/doc/draft-ietf-scitt-software-use-cases/

General Workflow

Statement
Issuers

Statement
ConsumersStatements

Objects (e.g.
Software
Artifacts)

Statement Issuers

• Statement Issuers
• Individuals, organizations, processes
• Examples - developers, source control management systems, build systems,

CI/CD systems, packaging systems, release management systems, auditors,
analysts

• Activities
• Make statements about software artifacts
• Relate statements to other statements
• Make statements to update, augment, or invalidate other statements
• Distribute statements

Statement
Issuers

Statements

• Who produced the software artifact
• What is contained in the software artifact
• Who distributed the software artifact
• What assessments were performed on the software artifact
• Weakness or vulnerabilities identified in a software artifact
• Mitigations to vulnerabilities
• Corrections, updates, augmentations or revocations of previous

statements
• Relationships between statements or software artifacts

Statements

Objects

• Software Artifacts
• Source Files
• Source Code Repository Commits
• Compiled Binaries
• Software Packages and Containers
• Disk Images
• Firmware Images

• Other Statements
• Non-Software Artifacts
• Build environments, Physical artifacts, etc.

Objects (e.g.
Software
Artifacts)

Statement Consumers

• Statement Consumers
• Individuals, processes
• Integrators, suppliers, procurement officers, risk managers, auditors, analysts, end

customers
• Activities

• Locate sources of statements
• Filter sources to those that are ‘trusted’ by the consumer
• Filter and download relevant statements
• Verify statement authenticity and integrity
• Obtain new, updated statements as they become available
• Ensure statements are current and have not been invalidated
• Aggregate statements
• Use statements to apply policy regarding use of software artifacts

Statement
Consumers

Experience
from the
Hackathon

Jon Geater

! INFO !

Most of the brain power expended
at the hackathon itself was actually
spec hacking on the architecture.
The fruits of that effort will be
revealed and discussed in the next
section.

This section is confined to the code
exercise.

14

Intent of the code hack
• Multiple implementations proving out the current state of arch – are we on the right track?

• Testing practicality of interface flows

• Retrieve receipt à la 8.1.2 and any dependent interfaces

• Synchronous vs location headers & polling

• Testing practicality of data structures

• Claims must conform to 6.1 Envelope and claim format.

• Register API must take this form and return a COSE receipt

• Actual content of receipts is out of scope as they’re not defined in any adopted work
yet. This should be considered a research activity to inform later development.

• Testing interoperability of interface and data structures

• BUT NOT PAYLOAD INTEROPERABILITY!

What got done - code

16

What got done - code

17

Register Claims and
arrange into Feeds

Register Claims and
arrange into Feeds

Get Receipts and
verify

Get Receipts and
verify offline

Guide and test
interoperability

Emulator
client

Emulator
server

Emulator CCF
‘back end’

Emulator
RKVST proxy

RKVST
Back end

Quorum DLT

Create claim

Submit claim

Retrieve claim

Retrieve receipt

Verify receipt

Merkle Tree

… ?

Draft
REST
i/f

Emulator
client

Emulator
server

Emulator CCF
‘back end’

Emulator
RKVST proxy

RKVST
Back end

Quorum DLT

Create claim

Submit claim

Retrieve claim

Retrieve receipt

Verify receipt

Merkle Tree

… ?

Draft
REST
i/f

CBOR / COSE receipt

Offline verifiable merkle proofs

Take-aways: successes and issues raised
• 2.5 implementations proving out the current state of arch

• Broadly demonstrated practicality of interface flows
• Statement à Claim à Receipt à Offline Verify
• Some turbulence in countersigning ideas during code development

(I think we’re better now!)
• Question marks over how to specify handling of long running operations
• We will need different verification for different tree algorithms

(and we really need multiple tree algs: Orie suggested a registry for tree algs in COSE yesterday)

• Broadly demonstrated practicality of data structures
• OIDCà COSE claims à CBOR receipts
• COSE is great for expressing and serializing the structures, but was a bit awkward for passing

across application boundaries. We opted for JSON & base64

• Broadly demonstrated interoperability of interface and data structures
• Single reference client implementation worked with both RKVST and itself
• RKVST receipts are verifiable entirely offline with ‘standard’ OSS code – cbor2, pycose, eth_utils
• Transmute and RKVST implementations of receipt validation structurally very similar

23

Architecture
Cédric Fournet

Core Concepts & Revised Terminology

Can I trust
this artifact?

Artifact: source or binary
package, container, script,

firmware, git tag, installer…

Verifier (integrator)

Issuer: an entity providing
information about the artifact
(developer, distributor, SCM,
build or CI system, auditor, …)

Registry/Transparency Service:
an authority partially trusted
by consumers to verify and

record information from issuers

Statement:
Any information
about the artifact

Transparent
Statement:
Signed by issuer &
registered by the
Transparency Service

Signed Statement:
What the issuer says
about the artifact

Statement Issuance

• The Issuer publishes its signing key using any DID method.
This provides a stable long-term identifier for the issuer
independent of its short-lived cryptographic credentials
(certificates, signing keys, etc.)

• The Issuers serializes a Statement in a format of their choice
(JSON, XML, SPDX, CycloneDX, SLSA, reference to storage…)

• The Issuer produces a COSE signed statement with headers
• issuer is the issuer’s DID
• feed is the issuer’s identifier for the artifact the

statement refers to, e.g. a firmware image
• cty is the format of the serialized statement

(specified using mediatype)
• registration info includes input parameters

for applying the TS registration policy

Header Value

issuer did:web:firmware.sec.fpga.com

alg ES384

kid 20220101

feed C910 FPGA Firmware

cty application/x-c910-firmware-image

registration_info timestamp, version number, …

Serialized Statement [COSE Payload]

Signature 3045022100e7d0…

COSE_Sign1

Sections 5.1, 6.2

Statement Registration

27

• Some entity submits the Signed Statement
for registration at the transparency service

• The Transparency Service authenticates
the Issuer and checks it against its registration
policy to validate the COSE signature

• The Transparency Service may apply additional
policy checks including:
• Restrictions on issuer identity
• Policies that depend on prior registered claims
• Policies that depend on the cty, registration info,

and payload

• The Transparency Service returns a Receipt
as proof of registration in its log

Sections 5.2, 6.4

WG work item: which registration
policies should be standardized?

Validation & Audit

28

Register Claim

• Most Consumers of the Artifact trust a given trusted
Transparency Service, and check that they get a valid
Transparent Statement associated with the Artifact by
verifying its Receipt

• Some Consumers may additionally check details of the
Statement, re-verify the Issuer’s signature,
and apply additional policies before accepting the artifact

• The most suspicious consumers (auditors) do not
fully trust the transparency service. They may keep state,
fully re-play the registration of some/all claims, and
examine collected receipts from other verifiers

WG work item: do we need additional support
for auditors and verifiers to query the registry?

Sections 5.3, 6.5

Scalability?
Issuance is fully-distributed
Registration scales by
• batching: Signed Statements can be registered

in bulk, by extending the Merkle tree & signing
its root once per batch
(10k+ Statements/S throughput with mS latency)

• keeping Transparent Statements small, e.g.,
by detaching payloads & including only commitments
to larger documents such as SBOMs.

• federation: not everyone needs to keep track of
intermediate Transparent Statements

Verification scales by relying on receipts
• Relying parties can verify transparent claims offline
• Untrusted stores can replicate the log and serve

Receipts without contacting the Transparency Service

WG work item: ensuring freshness
without contacting the TS

URLs for Transparent Statements

30

References are composed of 3 parts:

did:web:ts.example?seq=42&digest=4ce2320130450…

Use cases:
- Registration info referring to previously-registered statements, e.g.,

“this statement updates this earlier statement” or
“this statement is registered based on this policy statement”

- Federation (secondary Transparency Service pointing to primary Transparency Service)

Passing Statements by reference enables their transparent sharing
(Passing them by value opens potential inconsistency attacks)

a registry
identifier

a registration index to retrieve
the transparent claim & receipt

a commitment to the transparent
claim & receipt (SHA256 hash)

31

fresh WG work item

Registration may produce data that is relevant for verifiers, such as
- a timestamp
- a reference to a transparent statement that defines the applied registration policy
- a reference to a transparent statement that records the registry configuration
- a reference to the last transparent claim with same issuer & feed
…

Can we include such data in the resulting transparent statement?

Recording Registration Data

Recording Registration Data

32

Protected Header Value

iss did:web:firmware.sec.fpga.com

alg ES384

kid #key-3

feed C910 FPGA Firmware

cty application/…

registration_info timestamp, version number, …

payload: serialized Statement

Issuer signature 3045022100e7d0…

Unprotected
Header

Value

registration_data policy applied,
statement replaced, …

receipt

Transparent Claim

iss
ua

nc
e

re
gi

st
ra

tio
n

Protected
Header

Value

iss did:web:transparency.example

alg ES384

kid #key-0

tree_alg CCF | QLDB | Trillion | Tessera

payload: Merkle Tree root

Transparency Service signature 150rbd5a502100e7fe…

Unprotected
Header

Value

inclusion_path [extra data, [+ hashes]

Receipt

au
th

en
tic

at
ed

 b
y

th
e

re
ce

ip
t

COSE Inclusion Proofs
Orie Steele

What is a SCITT Receipt?

• Proof that a SCITT signed statement has been successfully registered
in a Transparency Service

• Registration means:
• Apply registration policies (at minimum, verify issuer/identity)
• Store the signed statement in the append only log
• Compute a merkle proof for the signed statement
• Sign the merkle root and include the proof to produce a receipt
• Return the receipt to the submitter

How are SCITT Receipts used?

• Verifiers need only trust the issuer of the receipt, not the issuers of all
signed statement
• Receipts enables offline verification of the issuer's signed statements
• Receipts are also used in federation...

Why Are Receipts Like Countersignatures?

• SCITT Transparency Service acts like an electronic notary
• Certifies the authenticity of the signed statement
• Certifies any additional registration policies apply to the signed statement

• On a technical level, treating it like a countersignature + metadata:
• Allows embedding of receipts in the unprotected header of the signed statement
• Leveraging detached envelope payload forces verifiers to recompute the merkle

root

SCITT Receipts are COSE Merkle Proofs

• https://github.com/ietf-scitt/draft-steele-cose-merkle-tree-proofs
• Generic COSE Merkle Proofs can be used for SCITT Receipts

https://github.com/ietf-scitt/draft-steele-cose-merkle-tree-proofs

SCITT Receipt
Protected Header Value

iss did:web:transparency.example

kid #key-0

alg ES256

tree_alg CCF | QLDB | Trillion | Tessera

WG work item: Structure of receipts will hopefully be a COSE WG item,
and no longer specific to SCITT.

Payload: Merkle Root

Signature 3045022100e7d0…

Unprotected Header Value

inclusion_path [extra data, [+ hashes]

AOB (Open Mic) & Next Steps

Wrap-Up

Back up

Generalized Use Case

• Scenario: Software consumers want to consume products that meet
their requirements.
• Problems Today:
• Software producers need to provide assurance that products meet

customer requirements.

• No standard methods for software producers to create and share
assurance statements with customers.

Use Case Coverage

• Software types (software, firmware)
• Lifecycle steps (code, commit, package, release, deploy)
• Attack types (signing certificate compromise, vulnerability exploit)
• Distribution scenarios (multiple suppliers, integrators)
• Assessment scenarios (security and compliance audits, security

analysis)
• Deployment scenarios (firmware, IoT, air-gapped environments)

Use Case Example: Auditing of Software
Product
• Scenario: An organization has established procurement requirements and

compliance policies for software use.
• Problems Today:
• Difficult to gather track and manage associate relevant documents and

check results required for various types of audits
• assert the authenticity and provenance of documents relevant to audits in

a deterministic and uniform fashion
• check the validity of identity statements about relevant documents after

the fact (when they were made) in a consistent, long-term fashion
• allow for more than one level of complexity of audit procedures

(potentially depending on criticality)

Verification that Signing Certificate is
Authorized by Supplier
• Scenario: A malicious actor compromises a supplier, obtains a signing

certificate from the supplier, and uses it to sign compromised
software. The end user installs the compromised software believing it
to be from the supplier.
• Problem Today: No way for suppliers to identify Software consumer

wants to verify the authenticity and integrity of software before use
• Standards are needed to:
• allow verification that certificates used to sign software are authorized by the

supplier for signing and are still valid

Multi Stakeholder Evaluation of Released
Software
• Scenario: Individuals and organizations want to ensure the software

they produce and consume meets best practices (including business
and regulatory requirements) for security and privacy.
• Problems: Evaluating whether requirements have been met requires

tracking of activities, processes, and evaluations both as the software
is produced and following
• Standards are needed to
• Aggregate related assessments across multiple parties
• Express relationships between assessments
• Identify and discover relevant assessment providers

Security Analysis of a Software Product

• Scenario: A critical security issue is identified in a software component.
Individuals and organizations want to know if they are exposed, and if so,
what they can they do to reduce personal and business risk.
• Problems: Statements of exploitability and mitigation need to be

exchanged by many parties (component providers, integrators, deployment
administrators) before final assessments can be made to end users.
• Standards are needed to:

• Facilitate the timely exchange of statements of exploitability and mitigation
• Express the provenance and history of statements
• Express the relationship between statements
• Verify that statements come from authoritative sources

Use Case Coverage

• Software types (software, firmware)
• Lifecycle steps (code, commit, package, release, deploy)
• Attack types (signing certificate compromise, vulnerability exploit)
• Distribution scenarios (multiple suppliers, integrators)
• Assessment scenarios (security and compliance audits, security

analysis)
• Deployment scenarios (firmware, IoT, air-gapped environments)

