# An RPKI and IPsec-based AS-to-AS Approach for Source Address Validation

draft-xu-ipsecme-risav-00: <u>https://datatracker.ietf.org/doc/draft-xu-ipsecme-risav/</u> Github: <u>https://github.com/bemasc/risav/</u>

## **SAV** question definition

**Vulnerability**: It is difficult to resist attacks by disabling the IP source address.

**Traceability**: Attackers could conceal location and identity.

**Manageability**: It is difficult to realize billing and other management through the IP source address.





RISAV REF: https://spoofer.caida.org/summary.php

### **Overview**

- cryptographically-based inter-AS SAV protocol
- RPKI + IPsec compatible
- add MAC at source ASBR and delete it at destination ASBR



## **Control plane**

### **Enabling RISAV**

- Announcing that this AS supports RISAV.
- Publishing contact IPs.
  - RISAVAnnouncement: a Signed Object, testing for indicating the reliability of contact IP. RISAVAnnouncement ::= SEQUENCE { version [0] INTEGER DEFAULT 0, asID ASID, contactIP ipAddress, testing BOOLEAN }
- Performing IPsec session initialization (i.e. IKEv2).

### **Green Channel**

- A channel established only between pair ACSes.
- For rebooting quickly and imperceptible
- When it enabled, ASBRs don't perform RISAV validation.

### **Disabling RISAV**

- Targeted Shutdown
  - NO pair of inbound-outbound SAs. => strictly unidirectional SA.
  - If one AS sends NO\_ADDITIONAL\_SAS to its peer, it means the peer MUST halt all further RISAV negotiation temporarily.
  - > Deleting all SAs and rejecting new ones.
- Total Shutdown
  - Apply a targeted shutdown
  - Stop requiring RISAV authentication of incoming packets.
  - Remove the "RISAVAnnouncement" from the RPKI Repository.
  - ➤ Wait at least 24 hours.
  - Shut down the contact IP.



### Data plane

#### Transport mode

|                                          | 1                  | 2          | 3   |
|------------------------------------------|--------------------|------------|-----|
| 0123456789                               | 0123456789         | 012345678  | 901 |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |                    |            |     |
| Next Header P                            | ayload Len   RESER | RVED Scope | e   |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |                    |            |     |
| Security Parameters Index (SPI)          |                    |            |     |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |                    |            |     |
| Sequence Number Field                    |                    |            |     |
| +-+-+++++++++++++++++++++++++++++++++++  |                    |            |     |
| I                                        |                    |            | I.  |
| + Integrity Check Value-ICV (variable)   |                    |            |     |
| T                                        |                    |            | 1   |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- |                    |            |     |

Figure 2: Updated AH Format.

- ONLY the "Scope" field, which identifies the scope of protection for RISAV AH, is different from the original AH.
  - 0 for IP and 1 for AS; others not defined.
- Only used for AS-to-AS communication
- Only indexed by SPI and counterpart ASN regardless of src IP or dst IP in SAD
- Transparent to the end hosts.

#### **Tunnel mode**

- ESP encapsulation
- Tunnel is built with current ASBR and ACS's contact IP of another AS
- ASBR maintains its own SAD indexed by SPI and counterpart ASN

RISAV implementations **MUST** support transport mode, and **MAY** support tunnel mode.

- USE\_TRANSPORT\_MODE notification

## **MTU Handling and Replay Protection**

Choose a **minimum** acceptable "**inner MTU**" and reject RISAV negotiations whose inner MTU is **lower than** inner MTU.

- Prior knowledge of the outer MTU
- Estimation of the outer MTU

ICMP PACKET TOO BIG(PTB)

- Transport Mode
  - MTU value reduced by the total length of RISAV AH header
- Tunnel Mode
  - Be treated as single IP hop
  - Oversize will cause generating PTB

#### **MTU Estimation**

- Initial estimation
  - ➢ PMTUD (RFC 7383)
- MTU monitoring

Traffic Selector and Replay Status

- Simplest RISAV Configuration
  - Single Child SA (SHARING one)
  - > TSi lists all the IPs of sending AS
  - > and TSr lists all the IPs of receiving AS

Enabling Replay Protection

- Sender creates many Child SAs and narrow the TSi.
- each SA is processed by a single receiving ASBR
- Tunnel Mode: route each SA to a specific ASBR using IKEv2 Active Session Redirect.
- Transport Mode:

**Disabling Replay Protection** 

- Set the REPLAY-STATUS indication to False in CREATE\_CHILD\_SA notification,
- ✤ and delete the SA if....

### Others

#### **Security Consideration**

- 1. Threat model
  - a. Reply attack
  - b. Downgrade attack
- 2. Incremental benefit
- 3. Comparability
  - a. IPsec
  - b. Other SAVs

#### **Operational Consideration**

- 1. Reliability
- 2. Multiple ASBRs
- 3. Performance
- 4. NAT

Consistency with Existing Protocols

- IPv6
  - MTU: minimum of 1280B. {<u>MTU-Handling</u>}
  - Header Modification: RISAV-AH
  - IP address usage
- RPKI Usage
  - RISAV fully falls squarely within the limits of usage of RPKI key material.

# Thanks

### **Possible Extensions**

#### **Header-only Authentication**

It only authenticates the **IP source address**, **IP destination address**, etc.

An attacker could simply replace the payload, allowing it to issue an unlimited number of spoofed packets. Time-base key rotation



Time triggers the SM transit from S(n) to S(n+1) following the algorithm defined by two parties as well as generating the tags as the side product. Static-static ECDH negotiation

Ideas from RFC 6278

It would allow ASes to agree on shared secrets simply by syncing the RPKI database.

Pros.

• Stateless

Cons.

• Novel IPsec negotiation mechanism