4
N

Updates to X.509 Policy Validation

draft-davidben-x509-policy-graph

| DONTALWAYS
UPDATE DOCUMENTS

& BUTWHENIDO,
1 UPDATE RFC 5280

X.509 policy validation

Certificate policies (RFC 5280, section 4.2.1.4)
Policies asserted by the certificate, act as constraints in CAs
Policy mappings (RFC 5280, section 4.2.1.5)

Allows CAs to rename policy OIDs down the chain

(Other complexity omitted here. anyPolicy, user-initial-policy-set, inhibit anyPolicy, inhibit mappings,
require explicit policy, ...)

Policy trees

Intermediate
t—————————— +
Root: | anyPolicy | certificate policies: OID1, OID2, OID5
| {anyPolicy}|
e + policy mappings: OID1 - OID3, OID1 ~
)/ Y 0ID4
Vv \'"
F——————————— + F——————————— + _ .
Intermediate: | 0ID1 | | 0ID2 | End entity
F——————————— + F——————————— +
| {0ID3, 0ID4}| | {orp2} | certificate policies: OID2, OID3, OID6
F——————————— + F——————————— +
I I
I I
\'" \'"
F——————————— + F——————————— +
End-entity: | 0ID3 | | 0ID2 |

(a)

Follow this very simple algorithm...

valid policy tree:

path validation.

the certification
equal to
been proc
in the ce
NULL. Ot
ceases.

(d)

+ Cooper, et

A tree of certificate policies with their
optional qualifiers; each of the leaves of the tree
represents a valid policy at this stage in the certification

If valid policies evie+

path validation, tt

explicit_policy: an in
valid_policy tree is re(
number of non-self-issu
this requirement is imps
decreased, but may not |
certificate in the path
valid_policy_ tree, a la
requirement. If initia
initial value is 0, othi

al. Standa;

The) init ppe 5280
valid_po
expected
consider: (e)

Figure 3
valid_po
describe

(£)

Figure 3

PKIX Certificaj

inhibit_anyPolicy: an .
anyPolicy policy identi.
integer indicates the m
to be processed before :
certificate other than |
certificate, is ignored
decreased, but may not |
certificate in the path
later certificate canno
inhibit is set, then thi
initial value is n+l.

policy mapping: an inty
is permitted. The intes
issued certificates to |
inhibited. Once set, t|
not be increased. That
specifies that policy mi
overridden by a later ci
mapping-inhibit is set,
otherwise the initial wi

(d)

a+ +hie

etama in

If the certificate policies
certificate and the valid p
the policy information by p
order:

(1)

For each policy P not eq
certificate policies ext
for policy P and P-Q den
P. Perform the followin

to the value from the expected policy set in the parent
node, set the qualifier set to AP-0, and set the
expected _policy_set to the value in the valid policy from

this node.

For example, consider a valid policy tree with a node of
depth i-1 where the expected policy set is {Gold, Silver}.
certificate policies

no policy qualifiers, but
This rule will generate
for each policy. The

6.

Assume anyPolicy appears in the
extension of certificate i with
Gold and Silver do not appear.

two child nodes of depth i, one
result is shown below as Figure

(ii)

If there was no mat
valid policy tree i
the valid policy an
the following value
set the qualifier s

(e) If the certificate policies extension is not present, set the
valid_policy_ tree to NULL.
(f) Verify that either explicit_policy is greater than 0 or the

If any of steps (a),

listed in Section 6.1.4
steps listed in Section 6.1.5.

valid_policy_tree is not equal to NULL;

(b),

(c), or (f) fails, the procedure
terminates, returning a failure indication and an appropriate reason.

If i is not equal to n, continue by performing the preparatory steps
. If i is equal to n, perform the wrap-up

expected_policy_set i i +
(i) For each node of dep B 1 i | | node of depth i-3
where P-OID is in th Pl . R +
. of depth i-1 where
child node as follow Assume the certifid / \
set the qualifier_se in the certificate / \
expected_policy_set i. The Gold policy / \
{P-0ID}. ‘ ‘ silver policy has t +. + o+ o+ +
silver were not mat
+ | X
- i al i Py | | generate two child l I | 1 Y 1 nodes of
or example, conside 1 Bodedl OF 4 policy. The result depth i-2
of depth i-1 where t P — nodas ot 3o /A |
White}. Assume the | {Gold} | depth & l 4 / \ |
silver appear in the | / \ |
certificate i. The | Figure 6. Processing Unmatched Pol *"' + + + + + + + + nodes of
Sléver pollc}}: is not Certificate Policies Extension Spec: H |l X ||] X | depth
node of depth i for i
shown as FI.: s (3) If there is a node in the valid pol | + + + + + + + + i-1
9! . or less without any child nodes, del + | / \
this step until there are no nodes ¢ | / \
s | without children. | / \
| R 1
PO For example, consider the valid pol. / * b s + + + nodes of
| P Figure 7 below. The two nodes at df [|1 [| depth
marked with an 'X' have no children | Gold + + o+ + + 4 + i
’lf -------- Applying this rule to the resulting f e |
{Gold, node at depth i-2 that is marked wit | { . . . 5
S | In the resulting tree, there are nd O | Figure 7. Pruning the valid policy_tree
less without children, and this ste] | {Gold}
——————————————— 6.1.4. Preparation for Certificate i+l
=
T Figure 5. Processing Unmatched Policies when a
v Leaf Node Specifies anyPolicy
_________________ +
Gold | (2) 1If the certificate policies extension includes the policy
_________________ + anyPolicy with the qualifier set AP-Q and either (a)
O | inhibit_anyPolicy is greater than 0 or (b) i<n and the
$ certificate is self-issued, then:
————————————————— + node of depth i
{Gold} | For each node in the valid_policy_tree of depth i-1, for
————————————————— £ each value in the expected_policy_set (including
anyPolicy) that does not appear in a child node, create a
Figure 4. Processing an Exact Match child node with the following values: set the valid_policy

...continued

6.1.4. Preparation for Certif

To prepare for processin
following steps for cert

(a)

(b)

Cooper, et al. sty

REC 5280

If a policy mapping
special value anyPo.
issuerDomainPolicy

If a policy mapping
issuerDomainPolicy

PKIX Certi

(1) If the policy ma
node in the valil
valid policy, se
subjectDomainPol
equivalent to ID.

If no node of de
valid_policy of
valid_policy of
the node of deptl
as follows:

Cooper, et al.

(i) set the val,

(h) If certificate i is not self-issued:

(1) 1If explicit_policy is not 0, decrement expl’

L.
(2) 1If policy mapping is not 0, decrement polic

(3) 1If inhibit_anyPolicy is not 0, decrement in
by 1.

(i) If a policy constraints extension is included
certificate, modify the explicit_policy and pc
state variables as follows:

(1) If requireExplicitPolicy is present and is
explicit policy, set explicit policy to the
requireExplicitPolicy.

(2) If inhibitPolicyMapping is present and is 1

policy mapping, set policy mapping to the v
inhibitPolicyMapping.

Standards Track

(ii) set the qua

policy anyPRFC 5280

extension o
(iii) set the exp
subjectDoma
equivalent

(2) If the policy maj

(i) delete each
where ID-P

(ii) If there is

i-1 or less without any chi
node. Repeat this step unt
depth i-1 or less without ¢

PKIX Certificate and CRL Profile

(g) Calculate the intersection of the valid policy_tree and the
user-initial-policy-set, as follows:

(1)

(ii)

(iii)

If the valid _policy_tree is NULL, the intersection is

NULL.

If the valid_policy tree is not NULL and the user-
initial-policy-set is any-policy, the intersection is
the entire valid policy_tree.

If the valid_policy tree is not NULL and the user-
initial-policy-set is not any-policy, calculate the

intersection o
initial-policy

Determine the
have a valid
valid_policy_

If the valid_
valid policy_
policy-set an
all its child

(j) If the inhibitAnyPolicy extension is included in the

certificate and is less than inhibit anyPolicy,

(a) If explicit_policy is not 0, decrement explicit policy by 1.

e

a node in the v (b)

-

If a policy constraints extension is included in the
certificate and requireExplicitPolicy is present and has a
value of 0, set the explicit_policy state variable to 0.

3.

If the valid policy_tree includes a node of depth n
with the valid_policy anyPolicy and the user-initial-
policy-set is not any-policy, perform the following
steps:

Set P-Q to the qualifier set in the node of depth n
with valid policy anyPolicy.

For each P-OID in the user-initial-policy-set that is
not the valid policy of a node in the

valid_policy node_set, create a child node whose
parent is the node of depth n-1 with the valid policy
anyPolicy. Set the values in the child node as
follows: set the valid policy to P-0ID, set the
qualifier set to P-Q, and set the expected_policy_set
to {P-0ID}.

Delete the node of depth n with the valid_policy
anyPolicy.

If there is a node in the valid policy tree of depth
n-1 or less without any child nodes, delete that node.
Repeat this step until there are no nodes of depth n-1
or less without children.

If either (1) the value of explicit_policy variable is greater than
zero or (2) the valid_policy tree is not NULL, then path processing
has succeeded.

Duplicate nodes

(1) For each policy P not equal to anyPolicy in the
certificate policies extension, let P-OID denote the 0ID
for policy P and P-Q denote the qualifier set for policy
P. Perform the following steps 1in order:

(i) For each node of depth i-1 in the valid_policy_tree
where P-0ID is in the expected_policy_set, create a
child node as follows: set the valid_policy to P-0ID,
set the qualifier_set to P-Q, and set the
expected_policy_set to

{P-01ID}.

X.509 policy trees grow exponentially

e
| anyPolicy | Certificate policies
Fom +
{anyPolicy}
emrenen : 0ID1, 0ID2
/ \
/ \
v v H H
Y . R . Policy mappings
| 0ID1 | | 0ID2 |
o + o +
| {0ID1, 0ID2}| |{0ID1, OID2}| OID1 » ()|[)1, OID1 » ()l[):Z,
o + o +
/ \ / \
J \ J \ OID2 ~» 0ID1, OID2 - OID2
o + o + o + o +
0ID1 0ID2 0ID1 0ID2
b b b b ! Repeat
|{0ID1, 0ID2}| | {0ID1, 0ID2}| | {0ID1, 0ID2}| |{0ID1, 0ID2}|
o + o + o + o +
| | | | | | | |
v v v v v \" v v
o= + - + - + - + - + - + - + - +
| oxD1 | | 0ID2 | | OIDL | | OID2 | | OID1 | | 0ID2 | | OIDL1 | | OID2 |

Denial of service vulnerability

Hosting providers may evaluate untrusted PKls

A trusted CA may issue a constrained intermediate to an untrusted party

e
| Red
e
I {}
e
| {Gold, White}
e

I

I

I

v
e —
| Gold
e —
I {}
e —
| {Gold}
e —

_________________ +
Blue |
_________________ +
{} I
_________________ +

_________________ +

I

I

I

v
_________________ +
Gold |
_________________ +
{} I
_________________ +
{Gold} |
_________________ +

Directed acyclic graph

it + it +
| Red | | Blue |
T + Tt +
I {1 I I {1 I
it + it +
| {Gold, White} | | {Gold, Yellow} |
T + Tt +
\ /
\ /
\ /
v v
e +
| Gold |
e +
I {} I
e e S L +
| {Gold} |

Policy graphs grow linearly

Fm——————————— + L] . L]
| anypoticy | Certificate policies
et T +
| {anyPolicy}|
R H OID1, OID2
/ \
v v . .
e 4 . Policy mappings
| 0ID1 | 0ID2 |
Fom EE +
| {0ID1, 0ID2}| |{OID1, OID2}| OID1 - 0OID1, OID1 = 0ID2,
Fom EE +
| " | 0ID2 ~ OID1, 0ID2 ~ 0ID2
\" vV Vv \"
Fom EE +
| om1i | | om2 | Repeat
Fom EE +
|{oID1, 0ID2}| |{0ID1, OID2}|
Fom EE +
| \/ |
| A |
\" vV Vv \"
Fom EE +
| 0ID1 | 0ID2 |

draft-davidben-x509-policy-graph

Updates RFC 5280 with the new algorithm
Updates verification output
Discusses other mitigations

Limit certificate depth

Limit policy tree size

Inhibit policy mapping

Disable policy checking

Verify signatures first (partial mitigation only)

Questions?

draft-davidben-x509-policy-graph

