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X.509 policy validation

Certificate policies (RFC 5280, section 4.2.1.4)
Policies asserted by the certificate, act as constraints in CAs
Policy mappings (RFC 5280, section 4.2.1.5)

Allows CAs to rename policy OIDs down the chain

(Other complexity omitted here. anyPolicy, user-initial-policy-set, inhibit anyPolicy, inhibit mappings,
require explicit policy, ...)
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(g) Calculate the intersection of the valid policy_tree and the
user-initial-policy-set, as follows:

(1)

(ii)

(iii)

If the valid _policy_tree is NULL, the intersection is

NULL.

If the valid_policy tree is not NULL and the user-
initial-policy-set is any-policy, the intersection is
the entire valid policy_tree.

If the valid_policy tree is not NULL and the user-
initial-policy-set is not any-policy, calculate the
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If a policy constraints extension is included in the
certificate and requireExplicitPolicy is present and has a
value of 0, set the explicit_policy state variable to 0.

3.

If the valid policy_tree includes a node of depth n
with the valid_policy anyPolicy and the user-initial-
policy-set is not any-policy, perform the following
steps:

Set P-Q to the qualifier set in the node of depth n
with valid policy anyPolicy.

For each P-OID in the user-initial-policy-set that is
not the valid policy of a node in the

valid_policy node_set, create a child node whose
parent is the node of depth n-1 with the valid policy
anyPolicy. Set the values in the child node as
follows: set the valid policy to P-0ID, set the
qualifier set to P-Q, and set the expected_policy_set
to {P-0ID}.

Delete the node of depth n with the valid_policy
anyPolicy.

If there is a node in the valid policy tree of depth
n-1 or less without any child nodes, delete that node.
Repeat this step until there are no nodes of depth n-1
or less without children.

If either (1) the value of explicit_policy variable is greater than
zero or (2) the valid_policy tree is not NULL, then path processing
has succeeded.




Duplicate nodes

(1) For each policy P not equal to anyPolicy in the
certificate policies extension, let P-OID denote the 0ID
for policy P and P-Q denote the qualifier set for policy
P. Perform the following steps 1in order:

(i) For each node of depth i-1 in the valid_policy_tree
where P-0ID is in the expected_policy_set, create a
child node as follows: set the valid_policy to P-0ID,
set the qualifier_set to P-Q, and set the
expected_policy_set to

{P-01ID}.




X.509 policy trees grow exponentially

e . . . .
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Denial of service vulnerability

Hosting providers may evaluate untrusted PKls

A trusted CA may issue a constrained intermediate to an untrusted party
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Policy graphs grow linearly
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Updates RFC 5280 with the new algorithm
Updates verification output
Discusses other mitigations

Limit certificate depth

Limit policy tree size

Inhibit policy mapping

Disable policy checking

Verify signatures first (partial mitigation only)




Questions?
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