SRv6/MPLS Option-BC Service Interworking

draft-zzhang-spring-service-interworking

Jeffrey Zhang, Shraddha Hegde, Krzysztof Szarkowicz IETF116, Yokohama

Existing Interwork Solutions

- draft-bonica-spring-srv6-end-dtm
 - Transport interwork with BGP-LU
- draft-agrawal-spring-srv6-mpls-interworking
 - Transport interwork
 - 60M/Mo6, star topology with core using one data plane and leaves using the other
 - Service Interwork
 - Single-plane PEs (SRv6 PEs don't even do MPLSoIP/MPLSoUDP)
 - Dual-plane Interwork Nodes
 - Option-A style: Service header lookup in service instances on GW
 - Option-B style: allocate new service SIDs/labels when re-advertising received service routes
 - Per service SID/label FIB state required on the interwork nodes
- If SRv6 PEs can do MPLSoIP/MPLSoUDP, then Option-C works
 - Though this is really MPLS service all the way not interwork

Option B Example

- SRv6 PE1 advertises 10k service prefixes with 1K Service SIDs
 - E.g., 1k VRF table "labels", each embedded in the NLRI's label field
 - All with the same Prefix SID attribute that includes:
 - A SID value
 - LOC/FUNCT/ARG and transposition offset/length
 - This allows the ingress PE to superimpose the "label" to the SID to get the Service SID
- IWN re-advertises to MPLS side with 1k locally allocated service labels
 - Creates 1k MPLS FIB entries to map the locally allocated service labels to individual SRv6 Service SIDs
 - Notice that this is for each SRv6 PE
- The goal is to reduce the 1k FIB entry (per PE) to 1
 - Similar in the other direction

Service Interwork Option-BC: SRv6 \rightarrow MPLS

- When InterWork Node (IWN) re-advertises service routes from MPLS to SRv6 domain
 - Don't change the NLRI (i.e. the service label)
 - Add a Prefix SID attribute
 - SRv6 SID Structure Sub-Sub-TLV' transposition length/offset will direct the receiving SRv6 ingress PE to
 place the NLRI label into the lower part of FUNC bits
 - The higher FUNC bits indicate a new End.DBS behavior specific to the received BGP nexthop (e.g., the egress/advertising service PE)
- Ingress SRv6 PE
 - Send service traffic with the service SID resulting from superimposing NLRI label to the lower part of the FUNC bits in the SID received from the IWN
- End.DBS behavior on IWN:
 - "Decapsulation, Binding (to a particular MPLS PE), Shifting (part of FUNCT to label stack)"
 - Higher part of FUNC bits map to the DBS behavior for a particular MPLS PE
 - Lower part of FUNC bits become the service label being pushed first

Signaling of service prefix spfx2

Traffic for service prefix spfx2

Service Interwork Option-BC: MPLS → SRv6

- When re-advertising service route from SRv6 to MPLS domain:
 - Don't change the NLRI (i.e. the service label)
 - Use a next hop address that maps to the SID in the Prefix SID attribute
 - If MPLS domain is IPv6, this can be the SID itself in Prefix SID attribute
 - If the NLRI label field is 24-bit then the extra 4-bit is appended to the SID
- For the above-mentioned next hop address, a transport/underlay route is advertised via BGP-LU with a distinct IW label
 - Ingress MPLS PE sends service traffic with the <IWN SID, IW label, service label in NLRI>
- IWN behavior
 - For an incoming IW label, find the corresponding SRv6 SID, superimpose the next (service) label in stack to the SID, and send traffic out with the resulting SID

Signaling of service prefix spfx1

Traffic for service prefix spfx1

Pros and Cons

- Completely independent SRv6/MPLS domains
 - One side SRv6 and the other side can be MPLS IPv4/IPv6, SR or not
 - Incremental transition (domain by domain)
 - Option-B advantage
- No per-service SID/label state on the interwork node
 - Option-C advantage
- Works with EVPN label-based multi-homing split-horizon
 - Details in draft
- Interwork node needs programmable or new ASIC
 - Extract lower FUNCT bits and push as label for SRv6 \rightarrow MPLS traffic
 - Pop next label and superimpose to SRv6 SID for MPLS \rightarrow SRv6 traffic

Next Steps

- Comments and suggestions appreciated
- Figure out a plan to move forward