TCP ACK Rate Request (TARR) option

draft-ietf-tcpm-ack-rate-request-01

Carles Gomez
Universitat Politècnica de Catalunya

Jon Crowcroft
University of Cambridge

IETF 116 Yokohama, TCPM WG, March 2023
Intro: motivation

• Delayed ACKs
 • Intended to reduce protocol overhead
 • But may also contribute to suboptimal performance

• “Large” cwnd scenarios (i.e. cwnd >> MSS):
 – Saving up to 1 of every 2 ACKs may be insufficient
 • Performance limitations due to asymmetric path capacity
 • Computational cost and network load

• “Small” cwnd scenarios (i.e. cwnd up to ~1 MSS):
 – Data centers: BDP up to ~1 MSS
 • Delayed ACKs will incur a delay much greater than the RTT
 – Transactional data exchanges, or when cwnd decreases
 • Immediate ACKs may avoid idle times, allow faster cwnd growth
Intro: main TARR option format

- R carries binary encoding of ACK rate
- Maximum value of R: 127

“R” is the requested ACK rate
- R = 0: request an immediate ACK

Reserved bit (e.g. for future encodings/values of R, if needed)
Status

• WG adoption
 • draft-ietf-tcpm-ack-rate-request-00
 – Same content as draft-gomez-tcpm-ack-rate-request-06
 • February 2023

• Version -01
 • Aims to address comments received on the mailing list
 – Stretch ACKs
 • Minor additions and corrections
Updates (I/VI)

• Section 3 additions

• 3.1. Sender behavior
 – A TCP sender MUST NOT communicate a value of R corresponding to an amount of data bytes to be acknowledged at once by the receiver greater than rwin size or greater than cwnd size

• 3.2. Receiver behavior
 – A TARR-option-capable receiving TCP MUST ignore a value of R corresponding to an amount of data bytes to be acknowledged at once greater than the last rwin size it has announced
Updates (II/VI)

• New Section 5: “Issues of Stretch ACKs”
 • TARR may produce Stretch ACKs
 – ACKs that acknowledge more than two previously unacknowledged data segments
 • Issues:
 – Sender burstiness
 – Slow cwnd opening
 – Lower frequency of RTT samples
Updates (III/VI)

• 5.1. Sender burstiness
 • May contribute to router queue overflow and packet loss
 • Possible mitigation:
 – TCP Sender Pacing
 » Requires an algorithm to determine the data segment transmission rate, commensurate with R
Updates (IV/VI)

5.2. Slow cwnd opening

- Problem
 - During slow start, cwnd increases by up to SMSS upon receipt of an ACK covering new data
 - Stretch ACKs (even Delayed ACKs) reduce the amount of ACKs received by the sender
 » Reduced rate of cwnd growth, increased transfer time, reduced throughput
 - ABC (RFC 3465) might solve the problem, but still experimental, not fully included in RFC 5681

- Solution
 - A TCP sender SHOULD NOT use TARR to produce Stretch ACKs during Slow Start
 - A TCP sender MAY use TARR (R=1) for data segments transmitted during Slow Start
Updates (V/VI)

• 5.3. Lower frequency of RTT samples
 • Stretch ACKs reduce the number of RTT samples
 – Reduces responsiveness to RTT changes
 • Time-based packet loss detection becomes inaccurate
 – Unnecessary delays and/or spurious retransmissions
 • A sender SHOULD trigger an ACK being sent by the receiver at least once per RTT. Options:
 – Sending a data segment with the TARR option with R=0 at least once per RTT
 – Using R > 0, producing at least one ACK per RTT
Updates (VI/VI)

• Minor additions
 • Section 1
 – Delayed ACKs “SHOULD” in RFC 1122
 » Added: “subsequently reinforced in RFC 5681”
 – Added reference to RFC 9006:
 » “TCP Usage Guidance in the Internet of Things (IoT)”
 • Section 4
 – OLD: “packets that do not have the SYN bit set”
 – NEW: “when the sender requests an ACK rate of R”
Thanks!

Questions? Comments?

Carles Gomez
Universitat Politècnica de Catalunya

Jon Crowcroft
University of Cambridge

IETF 116 Yokohama, TCPM WG, March 2023