Bearers, Attachment
Circuits, SAPs, & Slicing

draft-boro-opsawg-teas-common-ac
draft-boro-opsawg-teas-attachment-circuit
draft-boro-opsawg-ntw-attachment-circuit

IETF#116, TEAS WG
March 2023

Mohamed Boucadair (Orange), Richard Roberts (Juniper), Oscar Gonzalez de Dios (Telefonica), Samier Barguil Giraldo (Nokia), Bo Wu (Huawei), Victor Lopez (Nokia), Ivan Bykov (Ribbon Communications), Qin Wu (Huawei), Ogaki Kenichi (KDDI), ...
“An SDP may be abstracted as a Service Attachment Point (SAP) [I-D.ietf-opsawg-sap] for the purpose of generalizing the concept across multiple service types and representing it in management and configuration systems.”
Background

- **Service Attachment Points (SAPs)** are network reference points where services can be (or are being) delivered to customers
 - SAPs may be provisioned *prior or during the activation* of a service instance
 - SAPs may be *multiservice (e.g., slice, L3VPN) or specific to a single service*
 - E.g., A dedicated service type is defined for network slices ("network-slice")

- SAPs are connected to a customer device (e.g., unmanaged CEs, ASBRs, Network Functions) via logical constructs called: **Attachment Circuits**
 - Setting up an AC may require *L2, IPv4/IPv6 address/prefix assignments, static/dynamic routes, OAM features* …
 - One or more ACs can be bound to the same SAP
 - The same AC can be terminated by one or more peer-SAPs
 - A SAP and a peer-SAP can share one or multiple ACs

- ACs are built over **bearers**
 - Bearers may be wireless, wired, et.
 - Bearers can be seen as the required underlying connection for the provisioning of an attachment circuit
 - The same bearer can host one or multiple ACs
Some Observations

• Recent service models make *hidden/inaccurate assumptions* about the AC
 – This limits the applicability of these service models
• Some models *overload* some concepts set in the SAP model
 – E.g., peer-sap-id to identify a logical connection
• **Lack of consistency**: the structure of the AC in some recent models is not aligned with the one used in existing RFCs
 – This deviation makes the mapping with network models **difficult** to achieve
 – E.g., L3SM and slicing may be provided over the same AC, but they don’t have the same AC structure. Distinct logics to translate a slice service into L3NM will be needed, which is **suboptimal**
• **Lack of a standard programmatic interface** to manage bearers and attachment circuits-as-a-service
• The SAP model **does not expose the ACs** that it terminates
The AC Effort

• An AC library with reusable types, identities, and groupings: \textit{ac-common}

• A model for managing ACs as a service: \textit{ac-svc}
 – Does \textit{not make any assumption about the internal structure} or even the nature or the services that will be delivered over an AC
 – Accommodates both \textbf{integrated and separate provisioning models}
 • Includes \textbf{reusable groupings} for use by other service models
 • Exposes AC \textbf{references} that can be used in other service placement requests. \textit{The AC/service glue is achieved using the AC references.}
 – Favor the approach of completely relying upon the AC service model \textit{instead of duplicating data nodes into specific modules} of advanced services that are delivered over an AC

• A network model for the AC management: \textit{ac-ntw}
 – Augments the SAP model with required AC data nodes
 – Network-view of ACs
Applicability to Network Slicing
A Sample Slicing Example
A Sample Slicing Example

```
{
"ietf-ac-svc:attachment-circuits": {
  "ac": [
  {
    "name": "ac1",
    "description": "Connection to site1 on vlan 100",
    "requested-start": "2023-12-12T05:00:00.00Z",
    "l2-connection": {
      "encapsulation": {
        "type": "ietf-vpn-common:dot1q",
        "dot1q": {
          "tag-type": "ietf-vpn-common:c-vlan",
          "cvlan-id": 100
        }
      },
      "bearer-reference": "bearerX@site1"
    },
    "ip-connection": {
      "ipv4": {
        "local-address": "192.0.2.2",
        "prefix-length": 30,
        "address": [
          {
            "address-id": "1",
            "customer-address": "192.0.2.1"
          }
        ]
      }
    },
    "routing-protocols": {
      "routing-protocol": [
        {
          "id": "1",
          "type": "ietf-vpn-common:static-routing",
          "static": {
            "cascaded-lan-prefixes": {
              "ipv4-lan-prefixes": [
                {
                  "lan": "198.51.100.0/24",
                  "next-hop": "192.0.2.1",
                  "lan-tag": "primary_UP_slice"
                }
              ]
            }
          }
        }
      ]
    }
  }
},
```

[Diagram of network topology showing VLANs and IP addresses]

```
...{
  "name": "ac2",
  "description": "Connection to site2 on vlan 200",
  "requested-start": "2023-12-12T05:00:00.00Z",
  "l2-connection": {
    "encapsulation": {
      "type": "ietf-vpn-common:dot1q",
      "dot1q": {
        "tag-type": "ietf-vpn-common:c-vlan",
        "cvlan-id": 200
      }
    },
    "bearer-reference": "bearerY@site2"
  },
  "ip-connection": {
    "ipv4": {
      "local-address": "192.0.2.6",
      "prefix-length": 30,
      "address": [
        {
          "address-id": "1",
          "customer-address": "192.0.2.5"
        }
      ]
    }
  },
  "routing-protocols": {
    "routing-protocol": [
      {
        "id": "1",
        "type": "ietf-vpn-common:bgp-routing",
        "bgp": {
          "neighbor": [
            {
              "id": "1",
              "peer-as": 65550
            }
          ]
        }
      }
    ]
  }
}
Bind Slice Services to ACs

```json
{
 "ietf-network-slice-service:network-slice-services": {
 "slo-sle-templates": {
 "slo-sle-template": [
 {
 "id": "low-latency-template",
 "template-description": "Lowest latency forwarding behavior"
 }
]
 },
 "slice-service": [
 {
 "service-id": "Slice URLLC_UP",
 "service-description": "Dedicate TN Slice for URLLC-UP",
 "slo-sle-template": "low-latency-template",
 "status": {},
 "sdps": {
 "sdp": [
 {
 "sdp-id": "sdp1",
 "ac-svc-name": ["ac1"]
 },
 {
 "sdp-id": "sdp2",
 "ac-svc-name": ["ac2"]
 }
]
 }
 }
]
 }
}
```
Summary

• NSSI to focus on network slice service specifics
• AC-related matters to be factorized among multiple services; including NSS
  – AC-as-a-Service Model
• Binding a network slice service to a list of ACs is done by means of AC references
  – New features added to the AC models will be available to the service models
  – No need to update the service models themselves
Appendix
Methodology

• **Adhere** as much as possible to the automation framework set in RFC 8969
  – Ease mappings between service/network models
  – Ease the mapping between network and device models

• **Leverage** L3SM (RFC 8299), VPN Common (RFC 9181), L3NM (RFC9182), L2NM (RFC9192), and SAP (draft-ietf-opsawg-sap)

• **Adjust** the structure as appropriate to accommodate cloud-specific deployments