Compact ECC Encodings
for TLS 1.3

draft-mattsson-tls-compact-ecc-03

»

1emiE
3 o
ey

::::..-‘-'-h

Existing ECDHE and ECDSA encodings in TLS 1.3

— Two problems: The encodings used in the ECDHE groups secp256r1, secp384r1, and secp521r1 and the
ECDSA signature algorithms ecdsa _secp?56r1 shal56, ecdsa secp384rl sha384, and
ecdsa_secp521r1 _sha512 have significant overhead and the ECDSA encoding produces variable-length
signatures.

— The document defines new optimal fixed-length encodings and registers new ECDHE groups and ECDSA
signature algorithms using these new encodings.

— The encoding are defined as a subset of the bytes in the current encodings. This makes interoperable
implementations easy.

— The new encodings have the same security properties and requirements as the old encodings.

— The new encodings reduce the size of the ECDHE groups with 33, 49, and 67 bytes and the ECDSA
algorithms with an average of 7 bytes.

— When secp256r1 compact and ecdsa_secpl56rl_shal56 compact are used as a replacement for the the
old encodings they reduce the size of a mutually authenticated TLS handshake with on average 80 bytes.

— These new encodings also work in DTLS 1.3 and are especially useful in cTLS.
— The alternative to do something cTLS specific seems worse.
— Many IoT devices want to continue using P-256 and ECDSA.

Compact ECDHE Encoding

Given a UncompressedPointRepresentation structure

struct {
uint8 legacy_form = 4;
opaque X[coordinate_length];
opaque Y[coordinate_length];

} UncompressedPointRepresentation;

the legacy _form and Y field are omitted to create a CompactRepresentation structure.

struct {
opaque X[coordinate_length];
} CompactRepresentation;

For secp256r1 the UncompressedPointRepresentation is 65 bytes and the CompactRepresentation
is 32 bytes, saving of 33 bytes.

04 /A6 DA 73 92 EC 59 1E 17 AB FD 53 59 64 B9 98 A6 DA 73 92 EC 59 1E 17 AB FD 53 59 64 B9 98 94
94 D1 3B EF B2 21 B3 DE F2 EB E3 83 OE AC 8F 01 D1 3B EF B2 21 B3 DE F2 EB E3 83 OE AC 8F 01 51
51 81 26 77 C4 D6 D2 23 7E 85 CF @1 D6 91 oC FB

83 95 4E 76 BA 73 52 83 05 34 15 98 97 E8 06 57

80

Section on Implementation Considerations

— The y-coordinate does not affect
the shared secret but it is needed
for point validation.

— The y-coordinate might also be
needed for combability with APIs.

— Compact representation have no
disadvantages compared to point
compression where the sign bit is
included.

— To my knowledge, there has never
been any patents on compact
representation.

3.2. Implementation Considerations for Compact Representation

For compatibility with APIs a compressed y-coordinate might be required. For validation or for compatibility
with APIs that do not support the full [SECG] format an uncompressed y-coordinate might be required (using
the notation in [SECG]):

o If a compressed y-coordinate is required, then the value ~yp set to zero can be used. The compact
representation described above can in such a case be transformed into the SECG point compressed
format by prepending X with the single byte 0x02 (i.e., M = 0x02 | | X).

« If an uncompressed y-coordinate is required, then a y-coordinate has to be calculated following Section
2.3.4 of [SECG] or Appendix C of [RFC6090]. Any of the square roots (see [SECG] or [RFC6090]) can be used.
The uncompressed SECG formatis M=0x04 || X | | Y.

For example: The curve P-256 has the parameters (using the notation in [RFC6090])

ep= 2256 _ 224 , 2192 . 296 _ 1
e a=-3
e b=410583637251521421293261297800472684091144410159937255 54835256314039467401291

Given an example x:

e x=115792089183396302095546807154740558443406795108653336 398970697772788799766525
we can calculate y as the square root w = (x3 + a - x + b)(P * 1/4) (mod p)

e y=834387180070192806820075864918626005281451259964015754 16632522940595860276856

Note that this does not guarantee that (x, y) is on the correct elliptic curve. A full validation according to
Section 5.6.2.3.3 of [SP-800-56A] is done by also checking that 0 < x < p and that y2 = x3 + a - x + b (mod p). The
implementation MUST perform public-key validation.

Compact ECDSA Encoding

Given a variable-length DER-encoded ECDSA-Sig-Value structure

30 69: SEQUENCE ({

@2 33: INTEGER
@0 D7 A4 D3 4B D5 4F 55 FE E1 A8 96 25 67 8C 3D
D5 E5 F6 @D AC 73 EC 94 OC 5C 7B 93 04 A@ 20 84
A9

Ecdsa-Sig-Value ::= SEQUENCE ({ 92 32: INTEGER
r %:$Eggg' 28 OF 59 5E D4 88 B9 AC 68 9A 3D 19 2B 1A 8B B3
\ S 8F 34 AF 78 74 CO 59 C9 80 6A 1F 38 26 93 53 ES

}

the SEQUENCE type, INTEGER type, and length fields are omitted and if necessary, the two
INTEGER value fields are truncated (at most a single zero byte) or left padded with zeroes to the
fixed length L.

For secp256r1 the ecdsa_secp256rl_sha256 example is 71 bytes and the
ecdsa_secp256r1_sha256 compact signature is 64 bytes, saving 7 bytes.

D7 A4 D3 4B D5 4F 55 FE E1 A8 96 25 67 8C 3D D5
ES5 F6 @D AC 73 EC 94 0C 5C 7B 93 04 A0 20 84 A9
28 9F 59 5E D4 88 B9 AC 68 9A 3D 19 2B 1A 8B B3
8F 34 AF 78 74 Co 59 C9 80 6A 1F 38 26 93 53 ES8

New IANA Registrations

— Three new ECDHE groups for
P-256, P-384, and P-521

— Three new signature algorithms
for P-256, P-384, and P-521

Value

TBD4

TBD5

TBD6

Value Description
TBD1 secp256r1_compact
TBD2 secp384r1_compact

TBD3 secp521r1_compact

Table 1: Compact ECDHE Groups

Description
ecdsa_secp256r1_sha256_compact
ecdsa_secp384r1_sha384_compact

ecdsa_secp521r1_sha512_compact

Table 2: Compact ECDSA Signature Algorithms

Recommended

Recommended

Y

Y

Reference
[This-Document]
[This-Document]

[This-Document]

Reference
[This-Document]
[This-Document]

[This-Document]

