
Merkle Tree Certificates
draft-davidben-tls-merkle-tree-certs-00

David Benjamin Devon O'Brien Bas Westerbaan

1

Size

Post-quantum signatures are no longer cheap

Time to revisit past design decisions

Classical signature sizes

P-256 65-byte pubkey, 70-byte sig

Post-quantum signature sizes

Falcon-512 897-byte pubkey, 666-byte sig
Falcon-1024 1793-byte pubkey, 1280-byte sig
Dilithium2 1312-byte pubkey, 2420-byte sig
Dilithium3 1952-byte pubkey, 3293-byte sig
Dilithium5 2592-byte pubkey, 4595-byte sig

Motivation
X.509

Post-quantum transition requires updating the
entire ecosystem: CAs, servers, clients, etc.

Ideal time to revisit where X.509 has and hasn’t
been a good fit for TLS

● Poor trust agility in practice (“one size fits
all” forces lowest common denominator)

● Keys not tightly bound to use
(cross-protocol attacks)

● Complexity (path-building, X.509 names,
parsing bugs)

2

● Very early draft of some ideas in this space
○ Interested in feedback on the design and general direction
○ Initial focus on browsers / HTTPS, and cases with similar needs

● New PKI mechanism, comparable to X.509 with Certificate Transparency
● Avoid large, post-quantum signatures at the cost of limited scope

○ Assumes short-lived certificates and automated issuance
○ Issuance is delayed by may take up to ~1 hour
○ Assumes relying parties have frequent access to an online transparency service

● A supporting certificate negotiation mechanism
● An optimization — used in conjunction with other PKI mechanisms

○ Subscribers fall back to other mechanisms, like X.509, when not applicable
○ Not, in itself, an X.509 replacement

Merkle Tree Certificates

3

Merkle Tree Primer
Build a tree over inputs

Each node contains hash of children

Root hash (“tree head”) commits to
entire tree

Need O(log n) hashes prove that an
input is contained in the tree

H(...)

A B

H(...)

C D

H(...)

H(...)

A B

H(...)

C D

H(...)

4

What's in a Certificate?

sig(tls)

sig(log1)

sig(log2)

 S
CT

 li
st

sig(ca1)

O
CS

P

pubkey(ca1)

sig(ca2)CA
 c

er
t..

.

DNS names, etc.

sig(ca1)

pubkey(tls)

EE
 c

er
t

Ce
rt

ifi
ca

te
Ce

rt
ifi

ca
te

Ve
ri

fy

Certificate and CertificateVerify contain:

A TLS key and application identifier

Proof from the PKI that identifiers match the key

Using the TLS key

Proof determined by PKI — the draft addresses this
portion

Key, identifiers, and usage determined by protocol —
the draft does not address this. See AuthKEM for an
example of changing it.

5

Merkle Tree Certificates

sig(tls)

sig(log1)

sig(log2)

 S
CT

 li
st

sig(ca1)

O
CS

P

pubkey(ca1)

sig(ca2)CA
 c

er
t..

.

DNS names, etc.

sig(ca1)

pubkey(tls)

EE
 c

er
t

Ce
rt

ifi
ca

te
Ce

rt
ifi

ca
te

Ve
ri

fy

Replace entire PKI proof with one Merkle Tree inclusion
proof. Estimate 640 bytes for the Web PKI (Section 5.5)

sig(tls)

DNS names, etc.

inclusion proof

pubkey(tls)

Falcon-512 897-byte pubkey, 666-byte sig
Falcon-1024 1793-byte pubkey, 1280-byte sig
Dilithium2 1312-byte pubkey, 2420-byte sig
Dilithium3 1952-byte pubkey, 3293-byte sig
Dilithium5 2592-byte pubkey, 4595-byte sig

Assertion
Proof

6

Certificate Lifecycle

7

Merkle Tree CAs
Entities that make assertions for relying parties, but
differently from X.509 CAs

start_time, batch_duration: defines periodic batches at
which CAs issue certificates, e.g. 1 hour

lifetime: lifetime for all certificates issued by CA, e.g. 14
days

Parameters are fixed for lifetime of the CA; run multiple CAs
if needed

CAs wait for available batch, and build a Merkle Tree out of
all pending requests. All certs in a batch expire together.

start_time

batch_duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lifetime

8

Merkle Tree CAs
CA signs a "window", a range of unexpired tree heads,
to attest to contents

CA publishes entire tree

Subscriber gets inclusion proof (no signature) for its
tree head — the “certificate” (issuance)

Relying party gets signed window (out-of-band)

Subscriber presents inclusion proof in TLS

Relying party trusts if inclusion proof matches a
trusted tree head

start_time

batch_duration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

lifetime

9

Transparency Service
Intermediary between CAs and relying parties:

● Mirrors CA assertions for monitors to audit
● Provides the latest valid window to relying

parties

Key responsibility: If a relying party trusts a tree
head, the corresponding tree is available to
monitors

Provides log availability, canonical consistent log state

Still OK if CA publishes split view or goes down)

Described as a single entity, but many trust models
are possible (Section 7)

10

Transparency Service Examples
Single trusted service

Update service from software vendor, etc.

Single update service with multiple mirrors

Update service defers mirrors to N mirrors, forwards tree heads once M
mirrors agree

Multiple mirrors

Relying party directly contacts N mirrors, accepts tree heads once M
mirrors agree

11

Security Comparison

sig(tls)

sig(log1)

sig(log2) S
CT

 li
st

sig(ca1)

O
CS

P

pubkey(ca1)

sig(ca2)CA
 c

er
t..

.

DNS names, etc.

sig(ca1)

pubkey(tls)

EE
 c

er
t

Ce
rt

ifi
ca

te
Ce

rt
ifi

ca
te

Ve
ri

fy

Inclusion proof and trusted tree head
implies CA certified the assertion.

sig(tls)

DNS names, etc.

inclusion proof

pubkey(tls)

Assertion
Proof

Up-to-date RPs can get delegations at
update time instead.

Short-lived certificates replace
external revocation information.

Transparency service ensures
assertion was logged.

12

Format Goals
A single “one size fits all” certificate limits to lowest component denominator

● Unupdatable relying party
● Limit to intersection of root stores
● Poor agility — Trust changes, root key rotation are difficult

Merkle Tree certificates need certificate negotiation

● Trade off issuance time and reach for size
● Only work if relying party updated after certificate was issued
● This cannot be your only certificate

Secondary goals:

● Bound keys to usage (cross-protocol attacks)
● Easy to parse
● Extensibility in the right places

13

struct {
 SubjectType subject_type;
 opaque subject_info<0..2^24-1>;
 Claim claims<0..2^24-1>;
} Assertion;

enum { tls(0), (2^16-1) } SubjectType;

struct {
 SignatureScheme signature;
 opaque public_key<1..2^24-1>;
} TLSSubjectInfo;

enum {
 dns(0), dns_wildcard(1), ipv4(2), ipv6(3),
 (2^16-1)
} ClaimType;

struct {
 ClaimType claim_type;
 opaque claim_info<0..2^24-1>;
} Claim;

Assertion Syntax
First pass at assertion syntax:

Assertion: subject and list of claims

Subject: who the CA is talking about, e.g.
holder of a TLS key

Claims: facts about the subject, e.g. “this TLS
key is authorized for example.com”

Protocols like TLS allocate SubjectTypes and
define the contents (keys, associated metadata)

Unlike X.509 SPKIs, subjects are inherently tied to
usage — avoid cross-protocol attacks

Allocate ClaimTypes to define new kinds of
identifiers (emails, user IDs, etc.). Just transcribed
SAN for now. 14

Certificate Syntax
Designed for certificate negotiation

Certificate: Assertion and proof

Proof: Some message that allows the relying
party to believe the assertion. Analogy: X.509
signatures + delegation chain

Trust anchor: Identifies a set of proofs that an
relying party accepts. Analogy: X.509 root’s
subject names.

Syntax defined by ProofType. In Merkle Tree
certs, the proof is an inclusion proof, and the
trust anchor is a batch number.

Negotiation: find a match between relying party’s
trust anchors and subscriber’s certificates

struct {
 Assertion assertion;
 Proof proof;
} BikeshedCertificate;
/* blatant placeholder name */

enum {
 merkle_tree_sha256(0), (2^16-1)
} ProofType;

struct {
 ProofType proof_type;
 opaque trust_anchor_data<0..2^8-1>;
} TrustAnchor;

struct {
 opaque issuer_id<1..32>;
 uint32 batch_number;
} MerkleTreeTrustAnchor;

struct {
 TrustAnchor trust_anchor;
 opaque proof_data<0..2^24-1>;
} Proof;

struct {
 uint64 index;
 HashValueSHA256 path<32..2^16-1>;
} MerkleTreeProofSHA256;

15

Certificate Negotiation
Subscribers maintain certificate set + extra info
from CA

● Trust anchor, e.g. (A, 1000)
● Matching aliases, e.g. (A, 1001), ..., (A, 1099)

if window size is 100
● Expiration time

RP sends supported trust anchors

● RPs use aliases to send a single trust anchor
● Here, (A, 1050) means “A’s validity window

ending at batch 1050”

Subscriber picks smallest unexpired certificate, no
need to understand proof type or contents

16

struct {
 Assertion assertion;
 Proof proof;
} BikeshedCertificate;
/* blatant placeholder name */

enum {
 merkle_tree_sha256(0), (2^16-1)
} ProofType;

struct {
 ProofType proof_type;
 opaque trust_anchor_data<0..2^8-1>;
} TrustAnchor;

struct {
 opaque issuer_id<1..32>;
 uint32 batch_number;
} MerkleTreeTrustAnchor;

struct {
 TrustAnchor trust_anchor;
 opaque proof_data<0..2^24-1>;
} Proof;

struct {
 uint64 index;
 HashValueSHA256 path<32..2^16-1>;
} MerkleTreeProofSHA256;

Use in TLS
tls SubjectType carries TLS signing keys

Negotiate with Bikeshed CertificateType:

● Single CertificateEntry with BikeshedCertificate
● Require ALPN if negotiated
● TODO: Fix client certificate type negotiation

(Section 10.4)

New trust_anchors extension (CH+CR) for relying
party TrustAnchor list

If no trust anchors match, fallback to X.509 or other
mechanism

enum { tls(0), (2^16-1) } SubjectType;

struct {
 SignatureScheme signature;
 opaque public_key<1..2^24-1>;
} TLSSubjectInfo;

enum {
 Bikeshed(TBD), (255)
} CertificateType;

enum {
 trust_anchors(TBD), (2^16-1)
} ExtensionType;

struct {
 TrustAnchor trust_anchors<1..2^16-1>;
} TrustAnchors;

17

Deployment Model
Subscribers maintain certificate set to cover different relying parties

Rolling renewal halfway through lifetime

Trust agility: Make this ACME server’s responsibility, transparent to subscriber

● Provision different certs as rely party’s trust requirements change
● Rotate CA keys transparently
● Deploy new ProofTypes transparently
● ARI to control renewal time

Use other cert or proof types for...

● Emergency rekeys
● Relying parties with stale data
● First few hours of a newly deployed site
● Existing relying parties

18

Next Steps
Looking for feedback (both design and general direction)

Flesh out missing details

Refine negotiation mechanism?

Worth making an X.509-style signature-based ProofType?

Your ideas here?

https://github.com/davidben/merkle-tree-certs

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/
19

