
Safe Congestion Control
draft-mathis-tsvwg-safecc-02

Matt Mathis - IETF 116
Freelance (in collaboration with MLab)

This is very early work

● Ultimate goal: robust tests for CC safety
○ Disallow behaviors that might harm other Internet users

■ Discourage behaviors that cause self harm or user surprises
○ Ideally any CCA that passes all tests should be unconditionally safe to deploy
○ Might eventually become RFC5033bisbis

● This is a “working draft” intended for expert readers
○ No Background or tutorial explanations
○ Mostly extra terse

● Quite likely that some text or ideas will spin out into other docs
○ RFC5033bis
○ Recommendations (requirements?) for upper layers

Input needed

● Coauthors/collaborators
● Is the Safe CC coverage complete?

○ Have I overlooked some pathologies or misbehaviors?
● Is my prior art complete?

○ I have mostly missed a decade of the IETF progress
○ What important ideas/developments/documents have I missed?
○ What important failed (unpublished) ideas have I missed?

● Where should this work proceed?
○ Congress; iccrg; tsvwg; etc?

Concept of “under adverse conditions”

● Linguistic shorthand
○ Generally statements of monotonicity over all network conditions

■ Simple concept
■ Complicated to say precisely
■ Brutal to repeat everywhere it is needed

● Imagine testing across the “entire” parameter space
○ Bandwidth, RTT, queue space, cross traffic, random loss, etc

■ Many orders of magnitude in all dimensions
○ For all starting conditions and all incremental changes the stated property must hold

Four most important (or challenging) criteria

● Freedom from Congestion Collapse
● Freedom from Regenerative Congestion
● Upper bound on steady state loss
● Freedom from starvation

Freedom from Congestion Collapse

● Overhead/payload ratio must not increase under adverse conditions
○ Problem discovered in 1986-87 Internet collapses
○ Jacoboson88 provided a solution

● Often failures can be discovered by thought experiments on designs
● Well understood in the TSV area (and our documents)

Freedom from Congestion Collapse

● Overhead/payload ratio must not increase under adverse conditions
○ Problem discovered in 1986-87 Internet collapses
○ Jacoboson88 provided a solution

● Often failures can be discovered by thought experiments on designs
● Well understood in the TSV area (and our documents)
● Libraries and applications often fail badly

○ Pervasive use of starting over on failures (not saving partial data)
● Application designers often think:

○ “TCP will protect the network from congestion collapse”
○ They do not consider congestion collapse to be their problem

Apply Congestion Collapse tests to the entire stack

● Application bench tests
○ Run a fixed “Unit of Application work”
○ Vary network parameters across entire space
○ Flag conditions that cause increased overhead

● Can “easily” fix egregious failures
○ E.g. restart from partial data

● However none can be totally fixed
○ Signalling (e.g. SYN and SSL) must be repeated
○ Unread data in receiver’s resequencing queue must be repeated

● We can’t use MUST

Material vs Non-material

● RFC2119 language is too “absolute”
○ These are strongly suggested criteria

● Is a “violation” important?
○ The term “material” comes from US legal (court) language

● Current draft language for all criteria
○ SHOULD but MUST document exceptions

● Also need non-absolute language for “requirements”
○ Currently using “criteria”

Freedom from Regenerative Congestion

● Adverse conditions must cause increased presented load
○ Definitions are tricky here, because loss must cause additional (re)transmissions
○ However the retransmission and all future transmissions must be delayed

● Again, TSV does pretty well
● Applications less so

○ Spreading the load across additional channels with different flow-tuples

Upper bound on steady state loss

● Goal is to protect all protocols, not just other transports
○ DNS, SYN exchanges and all other single packet exchanges are particularly exposed

■ Often rely on simple RTO without prior RTT measurement
● Current draft says 2%

○ Reno and CUBIC with SACK are way out of conformance
■ 25% or 33% loss on contrived networks (Somebody test this please)
■ Unacceptably high for widespread use

○ I would rather say 0.1%
■ Probably unrealistically low

● We will need a published, well thought out justification for final text
○ Probably experimental results and a model in a separate paper

Freedom from starvation

● Large flows must not starve small and starting flows
○ The distinction between small and large must self scale
○ Must apply for all mixed traffic, with multiple CCAs
○ This may create a weak form of fairness implicit in balancing “small” vs “large
○ Efficiency (filling arbitrary networks) is explicitly NOT a goal

■ Efficiency has been proven to conflict with freedom from starvation [Arun2022SigComm]
● More important than Fairness or Efficiency on most networks
● Some criteria are easy

○ Forbid CCAs from needlessly maintaining persistent full queues
○ This may eventually become grounds for banning Reno equivalent CCAs

● Much more research is needed
○ This might also require a separate paper

Currently 13 criteria listed in the draft

● I only covered the most interesting ones
● Several others are “interesting” as well
● Read draft-mathis-tsvwg-safecc

Looking forward

● Who will help?
● Which WG(s)?
● Side tasks:

○ Research on methods to test “under adverse conditions”
○ Draft on “Congestion Control Requirement for Applications”
○ Research on plausible “Upper Bounds for Steady State Loss”
○ Research on “Freedom from Starvation”
○ Research on several lessor criteria

● Important side point: different criteria can have differing maturities
○ Can start applying some of the criteria before others are ready

