Safe Congestion Control

draft-mathis-tsvwg-safecc-02
Matt Mathis - IETF 116
Freelance (in collaboration with MLab)

This is very early work

e Ultimate goal: robust tests for CC safety
o Disallow behaviors that might harm other Internet users
m Discourage behaviors that cause self harm or user surprises
o Ideally any CCA that passes all tests should be unconditionally safe to deploy
o Might eventually become RFC5033bisbis
e This is a “working draft” intended for expert readers
o No Background or tutorial explanations
o Mostly extra terse
e Quite likely that some text or ideas will spin out into other docs

o RFC5033bis
o Recommendations (requirements?) for upper layers

Input needed

e (Coauthors/collaborators

e |[s the Safe CC coverage complete?
o Have | overlooked some pathologies or misbehaviors?
e Is my prior art complete?
o | have mostly missed a decade of the IETF progress
o What important ideas/developments/documents have | missed?
o What important failed (unpublished) ideas have | missed?
e \Where should this work proceed?
o Congress; iccrg; tsvwg; etc?

Concept of “under adverse conditions”

e Linguistic shorthand
o Generally statements of monotonicity over all network conditions
m Simple concept
m Complicated to say precisely
m Brutal to repeat everywhere it is needed

e Imagine testing across the “entire” parameter space
o Bandwidth, RTT, queue space, cross traffic, random loss, etc

m Many orders of magnitude in all dimensions
o For all starting conditions and all incremental changes the stated property must hold

Four most important (or challenging) criteria

Freedom from Congestion Collapse
Freedom from Regenerative Congestion
Upper bound on steady state loss
Freedom from starvation

Freedom from Congestion Collapse

e Overhead/payload ratio must not increase under adverse conditions

o Problem discovered in 1986-87 Internet collapses
o Jacoboson88 provided a solution

e Often failures can be discovered by thought experiments on designs
e \Well understood in the TSV area (and our documents)

Freedom from Congestion Collapse

e Overhead/payload ratio must not increase under adverse conditions

o Problem discovered in 1986-87 Internet collapses
o Jacoboson88 provided a solution

e Often failures can be discovered by thought experiments on designs
e \Well understood in the TSV area (and our documents)
e Libraries and applications often fail badly

o Pervasive use of starting over on failures (not saving partial data)

e Application designers often think:
o “TCP will protect the network from congestion collapse”
o They do not consider congestion collapse to be their problem

Apply Congestion Collapse tests to the entire stack

e Application bench tests
o Run a fixed “Unit of Application work”
o Vary network parameters across entire space
o Flag conditions that cause increased overhead
e Can “easily” fix egregious failures
o E.g. restart from partial data
e However none can be totally fixed

o Signalling (e.g. SYN and SSL) must be repeated
o Unread data in receiver’s resequencing queue must be repeated

e We can’t use MUST

Material vs Non-material

e RFC2119 language is too “absolute”
o These are strongly suggested criteria
e |[s a “violation” important?
o The term “material” comes from US legal (court) language

e Current draft language for all criteria
o SHOULD but MUST document exceptions

e Also need non-absolute language for “requirements”
o Currently using “criteria”

Freedom from Regenerative Congestion

e Adverse conditions must cause increased presented load

o Definitions are tricky here, because loss must cause additional (re)transmissions
o However the retransmission and all future transmissions must be delayed

e Again, TSV does pretty well

e Applications less so
o Spreading the load across additional channels with different flow-tuples

Upper bound on steady state loss

e (Goal is to protect all protocols, not just other transports
o DNS, SYN exchanges and all other single packet exchanges are particularly exposed
m Often rely on simple RTO without prior RTT measurement
e Current draft says 2%

o Reno and CUBIC with SACK are way out of conformance
m 25% or 33% loss on contrived networks (Somebody test this please)
m Unacceptably high for widespread use

o | would rather say 0.1%
m Probably unrealistically low

e We will need a published, well thought out justification for final text
o Probably experimental results and a model in a separate paper

Freedom from starvation

e Large flows must not starve small and starting flows

o The distinction between small and large must self scale
o Must apply for all mixed traffic, with multiple CCAs
o This may create a weak form of fairness implicit in balancing “small” vs “large
o Efficiency (filling arbitrary networks) is explicitly NOT a goal
m Efficiency has been proven to conflict with freedom from starvation [Arun2022SigComm]

e More important than Fairness or Efficiency on most networks

e Some criteria are easy

o Forbid CCAs from needlessly maintaining persistent full queues
o This may eventually become grounds for banning Reno equivalent CCAs

e Much more research is needed
o This might also require a separate paper

Currently 13 criteria listed in the draft

e | only covered the most interesting ones
e Several others are “interesting” as well
e Read draft-mathis-tsvwg-safecc

Looking forward

e \Who will help?
e Which WG(s)?
e Side tasks:

o Research on methods to test “under adverse conditions”

o Draft on “Congestion Control Requirement for Applications”

o Research on plausible “Upper Bounds for Steady State Loss”
o Research on “Freedom from Starvation”

o Research on several lessor criteria

e Important side point: different criteria can have differing maturities
o Can start applying some of the criteria before others are ready

