
Foundational End-to-End
Verification of High-Speed
Cryptography

Philipp G. Haselwarter, Aarhus Uni
Benjamin Salling Hvass, AU
Lasse Letager Hansen, AU
Théo Winterhalter, Inria
Catalin Hritcu, MPI
Bas Spitters, AU

hacspec
a gateway to high-assurance cryptography (RWC)

Franziskus Kiefer, Karthikeyan Bhargavan
Lucas Franceschino, Denis Merigoux
Bas Spitters, Lasse Letager Hansen
Manuel Barbosa, Pierre-Yves Strub

TRUSTED (?)
COMPUTING

BASE

IoT

BoringSSL
NSS

Web

OS

Lang

12

10

 6

VERIFIED
CRYPTO

LIBRARIES

Vale

x86_64
AEAD, Hash,
Field Arith

HACL*

Portable C
EC, AEAD, DH,
Hash, Sig, PQC libjade

x86_64
AEAD, Hash,
EC, PQC

FiatC, Rust, Go
Field Arith

AUCurves
Rust
EC, BLS

Cryptol/SAW

C, Java
EC, AEAD,
Hash, PQC

CryptoLine
C, asm
Field Arith

EasyCrypt
F*

Coq SAT/SMT

Good news: For any modern crypto algorithm,
there is probably a verified implementation.

But… specs written in unfamiliar languages.

Verified
Cryptography
Workflow

In English +
Pseudocode

IETF RFC or
NIST Standard

+ Test Vectors

F* Spec
(HACL*)

EasyCrypt Spec
(libjade)

F* Implementation

Portable C Code

Translate

Translate

Jasmin
Implementation

Translate

Intel AVX2
 Optimized Assembly

Good news: For any modern crypto algorithm,
there is probably a verified implementation.

Ready to use today:
● You don’t have to sacrifice performance
● Mechanized proofs that you can run and re-run yourself
● You (mostly) don’t have to read or understand the proofs

But… not easy to use, or review, or extend,
or combine different verified implementations

● You need to carefully audit the formal specs, written in
tool-specific spec languages like F*, Coq, EasyCrypt

● You need to safely use their low-level APIs,
which often embed subtle pre-conditions

hacspec: a tool-independent spec language

Design Goals

● Easy to use for crypto developers
● Familiar language and tools
● Succinct specs, like pseudocode
● Strongly typed to avoid spec errors
● Executable for spec debugging
● Testable against RFC test vectors
● Translations to formal languages like

 F*, Coq, EasyCrypt, …

hacspec: a tool-independent spec language

Design Goals

● Easy to use for crypto developers
● Familiar language and tools
● Succinct specs, like pseudocode
● Strongly typed to avoid spec errors
● Executable for spec debugging
● Testable against RFC test vectors
● Translations to formal languages like

 F*, Coq, EasyCrypt, …

A purely functional subset of Rust

● Safe Rust without external side-effects
● No mutable borrows
● All values are copyable
● Rust tools & development environment
● A library of common abstractions

○ Arbitrary-precision Integers
○ Secret-independent Machine Ints
○ Vectors, Matrices, Polynomials,...

Language and Tools Details: hacspec.org

https://hacspec.org

hacspec: purely functional crypto code in Rust

ChaCha20 RFC ChaCha20 in
hacspec

Call-by-value

State-passing style

hacspec: translation to formal languages

ChaCha20 in
hacspec

F* Spec

Coq Spec

EasyCrypt Spec

libcrux: a library of verified cryptography

Crypto Standard Platforms Specs Implementations

ECDH
● x25519
● P256

Portable + Intel ADX
Portable

hacspec, F*
hacspec, F*

HACL*, Vale
HACL*

AEAD
● Chacha20Poly1305
● AES-GCM

Portable + Intel/ARM SIMD
Intel AES-NI

hacspec, F*, EasyCrypt
hacspec, F*

HACL*, libjade
Vale

Signature
● Ed25519
● ECDSA P256
● BLS12-381

Portable
Portable
Portable

hacspec, F*
hacspec, F*

hacspec, Coq

HACL*
HACL*

AUCurves

Hash
● Blake2
● SHA2
● SHA3

Portable + Intel/ARM SIMD
Portable
Portable + Intel SIMD

hacspec, F*
hacspec, F*

hacspec, F*, EasyCrypt

HACL*
HACL*

HACL*, libjade

HKDF, HMAC Portable hacspec, F* HACL*

HPKE Portable hacspec hacspec

Conclusions (libcrux)

● Fast verified code is available today for most modern crypto algorithms
○ + some post-quantum crypto; Future: verified code for ZKP, FHE, MPC, …
○ Most code in C or Intel assembly; Ongoing: Rust, ARM assembly, …

● hacspec can be used as a common spec language for multiple libraries
○ Ongoing: adding new Rust features, new proof backends, linking with Rust verifiers, …
○ Try it yourself: hacspec.org

● libcrux provides safe Rust APIs to multiple verified crypto libraries
○ Ongoing: recipes for integrating new verified crypto from various research projects
○ Try it yourself: libcrux.org

https://hacspec.github.io/
https://github.com/cryspen/libcrux

The Last Yard: linking hacspec to security proofs

https://eprint.iacr.org/2023/185

https://eprint.iacr.org/2023/185

Coq

Coq: proof assistant based on dependent type theory

Foundational: all proofs are reduced to a small kernel

Embedded (ocaml-like) functional programming language

Biggest library of formal proofs

Many uses programming language verification

The Last Yard: linking hacspec to security proofs

https://eprint.iacr.org/2023/185

https://eprint.iacr.org/2023/185

Jasmin

Problem: C-compilers have bugs, cannot be trusted to preserve constant-time

Jasmin language: structured control flow with assembly instructions

Coq verified compiler produces efficient code for x86 and ARM

Compiler does not introduce timing side-channel attacks

https://github.com/jasmin-lang/jasmin/wiki

https://github.com/jasmin-lang/jasmin/wiki

Hacspec and jasmin

Small imperative language L embedded in Coq

We connected the functional interpretation of a hacspec program with an
imperative interpretation
Automatic modular equivalence proofs

+ equivalence proofs with embedded jasmin AST

Framework for functional correctness of jasmin wrt hacspec

The Last Yard: linking hacspec to security proofs

https://eprint.iacr.org/2023/185

https://eprint.iacr.org/2023/185

Cryptographic security

Computational model of security (game hopping)

Dedicated tool support: Easycrypt

Not connected to huge mathematical libraries, not foundational

SSProve library in Coq

Build on math-comp mathematical library, includes game hopping, categorical
semantics.
State Separating Proofs: modular proof technique, similar to Joy of Cryptography

https://github.com/SSProve/ssprove

AES is cryptographically secure

Case study:

existing AES jasmin implementation is cryptographically secure

Ciphertext indistinguishability (IND-CPA)

The Last Yard: linking hacspec to security proofs

https://eprint.iacr.org/2023/185

https://eprint.iacr.org/2023/185

Conclusions

Coq Verified pipeline from:

● specification (hacspec) to
● efficient implementation (jasmin)
● verified correctness (Coq)

Specifically:

● AES in hacspec
● with existing jasmin implementation
● IND-CPA security in SSProve

