
Formal Analysis

A Brief Introduction

What is Formal Analysis?

Prove that a protocol specification meets its goals

Symbolic vs Computational Analysis

Symbolic analysis:
● Represent protocol algebraically
● Assume cryptographic primitives are

perfect
● Prove the protocol meets / doesn’t meet

its (intended) goals

Computational analysis:

● Represent protocol algebraically
● Use concrete bounds on cryptographic

primitives
● Compute an exact security bound for the

protocol

Case Study: TLS 1.3

● Cremers et al. produced a Tamarin model of various drafts of TLS 1.3
● Symbolic analysis
● Highly detailed model capturing virtually all modes and features
● In a single model
● During the standardisation process
● Found and fixed bugs in the design
● Proof very large (> 750k steps)
● Took several days on a 500GB - 128 core server

Needham-Schroeder

Attack

Needham-Schroeder-Lowe

Tamarin

rule I_1:
 let m1 = aenc{'1', ~ni, $I}pkR
 in

[Fr(~ni)
, !Pk($R, pkR)
, !Ltk($I, ltkI)
]

 --[OUT_I_1(m1)
]->
[Out(m1)
, St_I_1($I, ltkI, $R, pkR, ~ni)
]

Cribbed from the
examples distributed
with Tamarin

Tamarin UI

lemma nonce_secrecy:
 " /* It cannot be that */

not(
 Ex A B s #i.
 /* somebody claims to have setup a shared secret, */
 Secret(A, B, s) @ i
 /* but the adversary knows it */
 & (Ex #j. K(s) @ j)
 /* without having performed a long-term key reveal. */
 & not (Ex #r. RevLtk(A) @ r)
 & not (Ex #r. RevLtk(B) @ r)
)"

Conclusions

Formal Analysis:
● can be used to prove that a protocol works as intended
● can be very difficult
● has tooling that mechanises a lot of the drudgery away
● has been used to find and fix bugs in protocols we care about

Questions?

