
Network Modeling M. Boucadair
Internet-Draft Orange
Obsoletes: 8407 (if approved) Q. Wu
Updates: 8126 (if approved) Huawei
Intended status: Best Current Practice 6 July 2023
Expires: 7 January 2024

 Guidelines for Authors and Reviewers of Documents Containing YANG Data
 Models
 draft-boucadair-netmod-rfc8407bis-01

Abstract

 This memo provides guidelines for authors and reviewers of
 specifications containing YANG modules, including IANA-maintained
 modules. Recommendations and procedures are defined, which are
 intended to increase interoperability and usability of Network
 Configuration Protocol (NETCONF) and RESTCONF protocol
 implementations that utilize YANG modules. This document obsoletes
 RFC 8407.

 Also, this document updates RFC 8126 by providing additional
 guidelines for writing the IANA considerations for RFCs that specify
 IANA-maintained modules.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Network Modeling
 Working Group mailing list (netmod@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/netmod/.

 Source for this draft and an issue tracker can be found at
 https://github.com/boucadair/rfc8407bis.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Boucadair & Wu Expires 7 January 2024 [Page 1]

Internet-Draft Guidelines for YANG Documents July 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Changes since RFC 8407 5
 2. Terminology . 6
 2.1. NETCONF Terms . 7
 2.2. YANG Terms . 7
 2.3. NMDA Terms . 8
 2.4. Requirements Notation 8
 3. General Documentation Guidelines 8
 3.1. Module Copyright . 9
 3.2. Code Components . 9
 3.2.1. Example Modules 10
 3.3. Terminology Section 10
 3.4. Tree Diagrams . 10
 3.5. Narrative Sections 10
 3.6. Definitions Section 11
 3.7. Security Considerations Section 12
 3.7.1. Security Considerations Section Template 12
 3.8. IANA Considerations Section 14
 3.8.1. Documents That Create a New Namespace 14
 3.8.2. Documents That Extend an Existing Namespace 14
 3.9. References Sections 15
 3.10. Validation Tools . 15
 3.11. Module Extraction Tools 16
 3.12. Module Usage Examples 16
 4. YANG Usage Guidelines . 16

Boucadair & Wu Expires 7 January 2024 [Page 2]

Internet-Draft Guidelines for YANG Documents July 2023

 4.1. Module Naming Conventions 17
 4.2. Prefixes . 17
 4.3. Identifiers . 19
 4.3.1. Identifier Naming Conventions 19
 4.4. Defaults . 19
 4.5. Conditional Statements 20
 4.6. XPath Usage . 21
 4.6.1. XPath Evaluation Contexts 21
 4.6.2. Function Library 22
 4.6.3. Axes . 23
 4.6.4. Types . 24
 4.6.5. Wildcards . 24
 4.6.6. Boolean Expressions 25
 4.7. YANG Definition Lifecycle Management 26
 4.8. Module Header, Meta, and Revision Statements 27
 4.9. Namespace Assignments 28
 4.10. Top-Level Data Definitions 30
 4.11. Data Types . 30
 4.11.1. Fixed-Value Extensibility 31
 4.11.2. Patterns and Ranges 31
 4.11.3. Enumerations and Bits 32
 4.11.4. Union Types . 33
 4.11.5. Empty and Boolean 34
 4.12. Reusable Type Definitions 35
 4.13. Reusable Groupings 36
 4.14. Data Definitions . 36
 4.14.1. Non-Presence Containers 38
 4.14.2. Top-Level Data Nodes 39
 4.15. Operation Definitions 39
 4.16. Notification Definitions 39
 4.17. Feature Definitions 40
 4.18. YANG Data Node Constraints 41
 4.18.1. Controlling Quantity 41
 4.18.2. "must" versus "when" 41
 4.19. "augment" Statements 41
 4.19.1. Conditional Augment Statements 42
 4.19.2. Conditionally Mandatory Data Definition
 Statements . 42
 4.20. Deviation Statements 44
 4.21. Extension Statements 45
 4.22. Data Correlation . 45
 4.22.1. Use of "leafref" for Key Correlation 46
 4.23. Operational State . 47
 4.23.1. Combining Operational State and Configuration
 Data . 48
 4.23.2. Representing Operational Values of Configuration
 Data . 48
 4.23.3. NMDA Transition Guidelines 49

Boucadair & Wu Expires 7 January 2024 [Page 3]

Internet-Draft Guidelines for YANG Documents July 2023

 4.24. Performance Considerations 52
 4.25. Open Systems Considerations 53
 4.26. Guidelines for Constructs Specific to YANG 1.1 53
 4.26.1. Importing Multiple Revisions 53
 4.26.2. Using Feature Logic 53
 4.26.3. "anyxml" versus "anydata" 54
 4.26.4. "action" versus "rpc" 54
 4.27. Updating YANG Modules (Published versus Unpublished) . . 55
 5. IANA-Maintained Modules 55
 5.1. Context . 55
 5.2. Guidelines for IANA-Maintained Modules 56
 5.3. Guidance for Writing the IANA Considerations for RFCs
 Defining IANA-Maintained Modules 58
 5.3.1. Template for IANA-Maintained Modules with
 Identities . 59
 5.3.2. Template for IANA-Maintained Modules with
 Enumerations . 59
 6. IANA Considerations . 60
 7. Security Considerations 61
 8. References . 61
 8.1. Normative References 61
 8.2. Informative References 63
 Appendix A. Module Review Checklist 66
 Appendix B. YANG Module Template 68
 Acknowledgments . 70
 Authors’ Addresses . 70

1. Introduction

 The standardization of network configuration interfaces for use with
 network configuration management protocols, such as the Network
 Configuration Protocol [RFC6241] and the RESTCONF protocol [RFC8040],
 requires a modular set of data models that can be reused and extended
 over time.

 This document defines a set of usage guidelines for documents
 containing YANG 1.1 [RFC7950] and YANG 1.0 [RFC6020] data models,
 including IANA-maintained modules. YANG is used to define the data
 structures, protocol operations, and notification content used within
 a NETCONF and/or RESTCONF server. YANG is also used to define
 abstract data structures [RFC8791]. A NETCONF or RESTCONF server
 that supports a particular YANG module will support client NETCONF
 and/or RESTCONF operation requests, as indicated by the specific
 content defined in the YANG module.

Boucadair & Wu Expires 7 January 2024 [Page 4]

Internet-Draft Guidelines for YANG Documents July 2023

 Many YANG constructs are defined as optional to use, such as the
 "description" statement. However, in order to make YANG modules more
 useful, it is desirable to define a set of usage guidelines that
 entails a higher level of compliance than the minimum level defined
 in the YANG specification [RFC7950].

 In addition, YANG allows constructs such as infinite length
 identifiers and string values, or top-level mandatory nodes, that a
 compliant server is not required to support. Only constructs that
 all servers are required to support can be used in IETF YANG modules.

 This document defines usage guidelines related to the NETCONF
 operations layer and NETCONF content layer, as defined in [RFC6241],
 and the RESTCONF methods and RESTCONF resources, as defined in
 [RFC8040].

 These guidelines are intended to be used by authors and reviewers to
 improve the readability and interoperability of published YANG data
 models.

 Section 5.3 updates [RFC8126] by providing guidance for writing the
 IANA considerations for RFCs that specify IANA-maintained modules.

 Note that this document is not a YANG tutorial, and the reader is
 expected to know the YANG data modeling language before implementing
 the guidance in this document.

1.1. Changes since RFC 8407

 The following changes have been made to the guidelines published in
 [RFC8407]:

 * Implemented errata 5693, 5800, 6899, and 7416.

 * Updated the terminology.

 * Updated the URL of the IETF authors guidelines.

 * Added code markers for the security template.

 * Updated the YANG security considerations template to reflect the
 latest version maintained in the Wiki.

 * Added statements that the security template is not required for
 modules that follow [RFC8791].

Boucadair & Wu Expires 7 January 2024 [Page 5]

Internet-Draft Guidelines for YANG Documents July 2023

 * Added a statement that the RFCs that are listed in the security
 template are to be listed as normative references in documents
 that use the template.

 * Added a note that folding of the examples should be done as per
 [RFC8792] conventions.

 * Added a note that RFC8792-folding of YANG modules can be used if
 and only if native YANG features (e.g., break line, "+") are not
 sufficient.

 * Added tool validation checks to ensure that YANG modules fit into
 the line limits of an I-D.

 * Added tool validation checks of JSON-encoded examples.

 * Updated many examples to be aligned with the consistent
 indentation recommendation.

 * Updated the IANA considerations to encourage registration requests
 to indicate whether a module is maintained by IANA or not.

 * Added guidelines for IANA-maintained modules.

2. Terminology

 The following terms are used throughout this document:

 IANA-maintained module: A YANG module that is maintained by IANA
 (e.g., "iana-tunnel-type" [RFC8675] or "iana-pseudowire-types"
 [RFC9291]).

 IETF module: A YANG module that is published by the IETF and which
 is not maintained by IANA.

 published: A stable release of a module or submodule. For example,
 the "Request for Comments" described in Section 2.1 of [RFC2026]
 is considered a stable publication.

 unpublished: An unstable release of a module or submodule. For
 example the "Internet-Draft" described in Section 2.2 of [RFC2026]
 is considered an unstable publication that is a work in progress,
 subject to change at any time.

 YANG fragment: A set of YANG statements that are not intended to

Boucadair & Wu Expires 7 January 2024 [Page 6]

Internet-Draft Guidelines for YANG Documents July 2023

 represent a complete YANG module or submodule. These statements
 are not intended for actual use, except to provide an example of
 YANG statement usage. The invalid syntax "..." is sometimes used
 to indicate that additional YANG statements would be present in a
 real YANG module.

 YANG tree diagram: A diagram representing the contents of a YANG
 module, as defined in [RFC8340]. It is also called a "tree
 diagram".

2.1. NETCONF Terms

 The following terms are defined in [RFC6241] and are not redefined
 here:

 * capabilities

 * client

 * operation

 * server

2.2. YANG Terms

 The following terms are defined in [RFC7950] and are not redefined
 here:

 * data node

 * module

 * namespace

 * submodule

 * version

 * YANG

 * YIN

 Note that the term ’module’ may be used as a generic term for a YANG
 module or submodule. When describing properties that are specific to
 submodules, the term ’submodule’ is used instead.

Boucadair & Wu Expires 7 January 2024 [Page 7]

Internet-Draft Guidelines for YANG Documents July 2023

2.3. NMDA Terms

 The following terms are defined in [RFC8342] and are not redefined
 here:

 * configuration

 * conventional configuration datastore

 * datastore

 * operational state

 * operational state datastore

2.4. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. General Documentation Guidelines

 YANG modules under review are likely to be contained in Internet-
 Drafts (I-Ds). All guidelines for I-D authors [ID-Guidelines] MUST
 be followed. The guidelines for RFCs should be followed and are
 defined in the following: [RFC7322] (and any future RFCs that
 obsolete it), [RFC-STYLE], and [RFC7841].

 The following sections MUST be present in an I-D containing a YANG
 module:

 * Narrative sections

 * Definition sections

 * Security Considerations section

 * IANA Considerations section

 * References section

 There are three usage scenarios for YANG that can appear in an I-D or
 RFC:

 * normative module or submodule

Boucadair & Wu Expires 7 January 2024 [Page 8]

Internet-Draft Guidelines for YANG Documents July 2023

 * example module or submodule

 * example YANG fragment not part of any module or submodule

 The guidelines in this document refer mainly to a normative module or
 submodule but may be applicable to example modules and YANG fragments
 as well.

3.1. Module Copyright

 The module "description" statement MUST contain a reference to the
 latest approved IETF Trust Copyright statement, which is available
 online at:

 <https://trustee.ietf.org/license-info/>

3.2. Code Components

 Each normative YANG module or submodule contained within an I-D or
 RFC is considered to be a code component. The strings "<CODE
 BEGINS>" and "<CODE ENDS>" MUST be used to identify each code
 component.

 The "<CODE BEGINS>" tag SHOULD be followed by a string identifying
 the file name specified in Section 5.2 of [RFC7950]. The name string
 form that includes the revision date SHOULD be used. The revision
 date MUST match the date used in the most recent revision of the
 module.

 The following example is for the "2016-03-20" revision of the "ietf-
 foo" module:

 <CODE BEGINS> file "ietf-foo@2016-03-20.yang"
 module ietf-foo {
 namespace "urn:ietf:params:xml:ns:yang:ietf-foo";
 prefix "foo";
 organization "...";
 contact "...";
 description "...";
 revision 2016-03-20 {
 description "Latest revision";
 reference "RFC XXXX: Foo Protocol";
 }
 // ... more statements
 }
 <CODE ENDS>

Boucadair & Wu Expires 7 January 2024 [Page 9]

Internet-Draft Guidelines for YANG Documents July 2023

3.2.1. Example Modules

 Example modules are not code components. The <CODE BEGINS>
 convention MUST NOT be used for example modules.

 An example module SHOULD be named using the term "example", followed
 by a hyphen, followed by a descriptive name, e.g., "example-toaster".

 See Section 4.9 regarding the namespace guidelines for example
 modules.

3.3. Terminology Section

 A terminology section MUST be present if any terms are defined in the
 document or if any terms are imported from other documents.

3.4. Tree Diagrams

 YANG tree diagrams provide a concise representation of a YANG module
 and SHOULD be included to help readers understand YANG module
 structure. Guidelines on tree diagrams can be found in Section 3 of
 [RFC8340].

 If YANG tree diagrams are used, then an informative reference to the
 YANG tree diagrams specification MUST be included in the document.
 Refer to Section 2.2 of [RFC8349] for an example of such a reference.

3.5. Narrative Sections

 The narrative part MUST include an overview section that describes
 the scope and field of application of the module(s) defined by the
 specification and that specifies the relationship (if any) of these
 modules to other standards, particularly to standards containing
 other YANG modules. The narrative part SHOULD include one or more
 sections to briefly describe the structure of the modules defined in
 the specification.

 If the module or modules defined by the specification imports
 definitions from other modules (except for those defined in [RFC7950]
 or [RFC6991]) or are always implemented in conjunction with other
 modules, then those facts MUST be noted in the overview section; any
 special interpretations of definitions in other modules MUST be noted
 as well. Refer to Section 2.3 of [RFC8349] for an example of this
 overview section.

 If the document contains a YANG module(s) that is compliant with NMDA
 [RFC8342], then the Introduction section should mention this fact.

Boucadair & Wu Expires 7 January 2024 [Page 10]

Internet-Draft Guidelines for YANG Documents July 2023

 Example: The YANG data model in this document conforms to the
 Network Management Datastore Architecture defined in [RFC8342].

 Consistent indentation SHOULD be used for all examples, including
 YANG fragments and protocol message instance data. If line wrapping
 is done for formatting purposes, then this SHOULD be noted following
 [RFC8792], as shown in the following example:

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <myleaf xmlns="tag:example.com,2017:example-two">this is a long \
 value so the line needs to wrap to stay within 72 characters</myleaf>

 Native YANG features (e.g., breaking line, "+") SHOULD be used to fit
 a module into the line limits. Exceptionally, RFC8792-folding of
 YANG modules MAY be used if and only if native YANG features are not
 sufficient. A similar approach (e.g., use "--yang-line-length 69" or
 split a tree into subtrees) SHOULD be followed for tree diagrams.

3.6. Definitions Section

 This section contains the module(s) defined by the specification.
 These modules SHOULD be written using the YANG 1.1 [RFC7950] syntax.
 YANG 1.0 [RFC6020] syntax MAY be used if no YANG 1.1 constructs or
 semantics are needed in the module. If any of the imported YANG
 modules are written using YANG 1.1, then the module MUST be written
 using YANG 1.1.

 A YIN syntax version of the module MAY also be present in the
 document. There MAY also be other types of modules present in the
 document, such as Structure of Management Information Version 2
 (SMIv2), which are not affected by these guidelines.

 Note that if the module itself is considered normative and not an
 example module or example YANG fragment, then all YANG statements
 within a YANG module are considered normative. The use of keywords
 defined in [RFC2119] and [RFC8174] apply to YANG "description"
 statements in normative modules exactly as they would in any other
 normative section.

 Example YANG modules and example YANG fragments MUST NOT contain any
 normative text, including any all-uppercase reserved words from
 [RFC2119] and [RFC8174].

 Consistent indentation and formatting SHOULD be used in all YANG
 statements within a module.

 See Section 4 for guidelines on YANG usage.

Boucadair & Wu Expires 7 January 2024 [Page 11]

Internet-Draft Guidelines for YANG Documents July 2023

3.7. Security Considerations Section

 Each specification that defines one or more modules MUST contain a
 section that discusses security considerations relevant to those
 modules.

 Unless the modules comply with [RFC8791], the security section MUST
 be patterned after the latest approved template (available at
 <https://trac.ietf.org/trac/ops/wiki/yang-security-guidelines>).
 Section 3.7.1 contains the security considerations template dated
 2013-05-08 and last updated on 2018-10-18. Authors MUST check the
 web page at the URL listed above in case there is a more recent
 version available.

 In particular:

 * Writable data nodes that could be especially disruptive if abused
 MUST be explicitly listed by name, and the associated security
 risks MUST be explained.

 * Readable data nodes that contain especially sensitive information
 or that raise significant privacy concerns MUST be explicitly
 listed by name, and the reasons for the sensitivity/privacy
 concerns MUST be explained.

 * Operations (i.e., YANG "rpc" statements) that are potentially
 harmful to system behavior or that raise significant privacy
 concerns MUST be explicitly listed by name, and the reasons for
 the sensitivity/privacy concerns MUST be explained.

 Documents that define exclusively modules following the extension in
 [RFC8791] are not required to include the security template in
 Section 3.7.1.

3.7.1. Security Considerations Section Template

 <CODE BEGINS>
 X. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]

Boucadair & Wu Expires 7 January 2024 [Page 12]

Internet-Draft Guidelines for YANG Documents July 2023

 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 -- if you have any writable data nodes (those are all the
 -- "config true" nodes, and remember, that is the default)
 -- describe their specific sensitivity or vulnerability.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 and delete operations to these data nodes without proper protection
 or authentication can have a negative effect on network operations.
 These are the subtrees and data nodes and their sensitivity/
 vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- for all YANG modules you must evaluate whether any readable data
 -- nodes (those are all the "config false" nodes, but also all other
 -- nodes, because they can also be read via operations like get or
 -- get-config) are sensitive or vulnerable (for instance, if they
 -- might reveal customer information or violate personal privacy
 -- laws such as those of the European Union if exposed to
 -- unauthorized parties)

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- if your YANG module has defined any RPC operations
 -- describe their specific sensitivity or vulnerability.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 <list RPC operations and state why they are sensitive>
 <CODE ENDS>

 Note: [RFC8446], [RFC6241], [RFC6242], [RFC8341], and [RFC8040] (or

Boucadair & Wu Expires 7 January 2024 [Page 13]

Internet-Draft Guidelines for YANG Documents July 2023

 future RFCs that replace any of them) have to be listed as
 normative references.

3.8. IANA Considerations Section

 In order to comply with IESG policy as set forth in
 <https://www.ietf.org/id-info/checklist.html>, every I-D that is
 submitted to the IESG for publication MUST contain an IANA
 Considerations section. The requirements for this section vary
 depending on what actions are required of the IANA. If there are no
 IANA considerations applicable to the document, then the IANA
 Considerations section will state that "This document has no IANA
 actions". Refer to the guidelines in [RFC8126] for more details.

 Each normative YANG module MUST be registered in both the "IETF XML
 Registry" [RFC3688] [IANA-XML] and the "YANG Module Names" registry
 [RFC6020] [IANA-MOD-NAMES]. The registration request in the "YANG
 Module Names" registry should indicate whether the module is IANA-
 maintained or not. This applies to new modules and updated modules.
 An example of an update registration for the "ietf-template" module
 can be found in Section 6.

 Additional IANA considerations applicable to IANA-maintained modules
 are provided in Section 5.3.

3.8.1. Documents That Create a New Namespace

 If an I-D defines a new namespace that is to be administered by the
 IANA, then the document MUST include an IANA Considerations section
 that specifies how the namespace is to be administered.

 Specifically, if any YANG module namespace statement value contained
 in the document is not already registered with IANA, then a new entry
 in the "ns" subregistry within the "IETF XML Registry" MUST be
 requested from the IANA.

3.8.2. Documents That Extend an Existing Namespace

 It is possible to extend an existing namespace using a YANG submodule
 that belongs to an existing module already administered by IANA. In
 this case, the document containing the main module MUST be updated to
 use the latest revision of the submodule.

Boucadair & Wu Expires 7 January 2024 [Page 14]

Internet-Draft Guidelines for YANG Documents July 2023

3.9. References Sections

 For every import or include statement that appears in a module
 contained in the specification that identifies a module in a separate
 document, a corresponding normative reference to that document MUST
 appear in the Normative References section. The reference MUST
 correspond to the specific module version actually used within the
 specification.

 For every normative reference statement that appears in a module
 contained in the specification that identifies a separate document, a
 corresponding normative reference to that document SHOULD appear in
 the Normative References section. The reference SHOULD correspond to
 the specific document version actually used within the specification.
 If the reference statement identifies an informative reference that
 identifies a separate document, a corresponding informative reference
 to that document MAY appear in the Informative References section.

3.10. Validation Tools

 All modules need to be validated before submission in an I-D. The
 ’pyang’ YANG compiler is freely available from GitHub:

 <https://github.com/mbj4668/pyang>

 If the ’pyang’ compiler is used to validate a normative module, then
 the "--ietf" command-line option MUST be used to identify any IETF
 guideline issues.

 If the ’pyang’ compiler is used to validate an example module, then
 the "--ietf" command-line option MAY be used to identify any IETF
 guideline issues.

 To ensure that a module fits into the line limits of an I-D, the
 command "pyang -f yang --keep-comments --yang-line-length 69" should
 be used.

 The "yanglint" program is also freely available from GitHub.

 <https://github.com/CESNET/libyang>

 This tool can be used to validate XPath statements within YANG
 modules.

 To check that JSON-encoded examples [RFC7951] comply with the target
 data models, "yangson" program should be used. The "yangson" program
 is freely available from GitHub.

Boucadair & Wu Expires 7 January 2024 [Page 15]

Internet-Draft Guidelines for YANG Documents July 2023

 <https://github.com/CZ-NIC/yangson>

3.11. Module Extraction Tools

 A version of ’rfcstrip’ that will extract YANG modules from an I-D or
 RFC is available. The ’rfcstrip’ tool that supports YANG module
 extraction is freely available at:

 <https://github.com/mbj4668/rfcstrip>

 This tool can be used to verify that the "<CODE BEGINS>" and "<CODE
 ENDS>" tags are used correctly and that the normative YANG modules
 can be extracted correctly.

 The "xym" tool is freely available on GitHub and can be used to
 extract YANG modules from a document.

 <https://github.com/xym-tool/xym>

3.12. Module Usage Examples

 Each specification that defines one or more modules SHOULD contain
 usage examples, either throughout the document or in an appendix.
 This includes example instance document snippets in an appropriate
 encoding (e.g., XML and/or JSON) to demonstrate the intended usage of
 the YANG module(s). Example modules MUST be validated. Refer to
 Section 3.10 for tools that validate YANG modules and examples. If
 IP addresses are used, then a mix of either IPv4 and IPv6 addresses
 or IPv6 addresses exclusively SHOULD be used in the examples. IPv4
 and IPv6 addresses/prefixes reserved for documentation are defined
 [RFC5737] and [RFC3849].

4. YANG Usage Guidelines

 Modules in IETF Standards Track specifications MUST comply with all
 syntactic and semantic requirements of YANG 1.1 [RFC7950]. See the
 exception for YANG 1.0 in Section 3.6. The guidelines in this
 section are intended to supplement the YANG specification [RFC7950],
 which is intended to define a minimum set of conformance
 requirements.

 In order to promote interoperability and establish a set of practices
 based on previous experience, the following sections establish usage
 guidelines for specific YANG constructs.

 Only guidelines that clarify or restrict the minimum conformance
 requirements are included here.

Boucadair & Wu Expires 7 January 2024 [Page 16]

Internet-Draft Guidelines for YANG Documents July 2023

4.1. Module Naming Conventions

 Normative modules contained in Standards Track documents MUST be
 named according to the guidelines in the IANA Considerations section
 of [RFC7950].

 A distinctive word or abbreviation (e.g., protocol name or working
 group abbreviation) SHOULD be used in the module name. If new
 definitions are being defined to extend one or more existing modules,
 then the same word or abbreviation should be reused, instead of
 creating a new one.

 All published module names MUST be unique. For a YANG module
 published in an RFC, this uniqueness is guaranteed by IANA. For
 unpublished modules, the authors need to check that no other work in
 progress is using the same module name.

 Example modules are non-normative and SHOULD be named with the prefix
 "example-".

 It is suggested that a stable prefix be selected that represents the
 entire organization. All normative YANG modules published by the
 IETF MUST begin with the prefix "ietf-". Another standards
 organization, such as the IEEE, might use the prefix "ieee-" for all
 YANG modules.

 Once a module name is published, it MUST NOT be reused, even if the
 RFC containing the module is reclassified to "Historic" status. A
 module name cannot be changed in YANG, and this would be treated as a
 new module, not a name change.

4.2. Prefixes

 All YANG definitions are scoped by the module containing the
 definition being referenced. This allows definitions from multiple
 modules to be used, even if the names are not unique. In the example
 below, the identifier "foo" is used in all three modules:

Boucadair & Wu Expires 7 January 2024 [Page 17]

Internet-Draft Guidelines for YANG Documents July 2023

 module example-foo {
 namespace "tag:example.com,2017:example-foo";
 prefix f;

 container foo;
 }

 module example-bar {
 namespace "tag:example.com,2017:example-bar";
 prefix b;

 typedef foo { type uint32; }
 }

 module example-one {
 namespace "tag:example.com,2017:example-one";
 prefix one;
 import example-foo { prefix f; }
 import example-bar { prefix b; }

 augment "/f:foo" {
 leaf foo { type b:foo; }
 }
 }

 YANG defines the following rules for prefix usage:

 * Prefixes are never used for built-in data types and YANG keywords.

 * A prefix MUST be used for any external statement (i.e., a
 statement defined with the YANG "extension" statement).

 * The proper module prefix MUST be used for all identifiers imported
 from other modules.

 * The proper module prefix MUST be used for all identifiers included
 from a submodule.

 The following guidelines apply to prefix usage of the current (local)
 module:

 * The local module prefix SHOULD be used instead of no prefix in all
 path expressions.

 * The local module prefix MUST be used instead of no prefix in all
 "default" statements for an "identityref" or "instance-identifier"
 data type.

Boucadair & Wu Expires 7 January 2024 [Page 18]

Internet-Draft Guidelines for YANG Documents July 2023

 * The local module prefix MAY be used for references to typedefs,
 groupings, extensions, features, and identities defined in the
 module.

 Prefix values SHOULD be short but are also likely to be unique.
 Prefix values SHOULD NOT conflict with known modules that have been
 previously published.

4.3. Identifiers

 Identifiers for all YANG identifiers in published modules MUST be
 between 1 and 64 characters in length. These include any construct
 specified as an "identifier-arg-str" token in the ABNF in Section 14
 of [RFC7950].

4.3.1. Identifier Naming Conventions

 Identifiers SHOULD follow a consistent naming pattern throughout the
 module. Only lowercase letters, numbers, and dashes SHOULD be used
 in identifier names. Uppercase characters, the period character, and
 the underscore character MAY be used if the identifier represents a
 well-known value that uses these characters. YANG does not permit
 any other characters in YANG identifiers.

 Identifiers SHOULD include complete words and/or well-known acronyms
 or abbreviations. Child nodes within a container or list SHOULD NOT
 replicate the parent identifier. YANG identifiers are hierarchical
 and are only meant to be unique within the set of sibling nodes
 defined in the same module namespace.

 It is permissible to use common identifiers such as "name" or "id" in
 data definition statements, especially if these data nodes share a
 common data type.

 Identifiers SHOULD NOT carry any special semantics that identify data
 modeling properties. Only YANG statements and YANG extension
 statements are designed to convey machine-readable data modeling
 properties. For example, naming an object "config" or "state" does
 not change whether it is configuration data or state data. Only
 defined YANG statements or YANG extension statements can be used to
 assign semantics in a machine-readable format in YANG.

4.4. Defaults

 In general, it is suggested that substatements containing very common
 default values SHOULD NOT be present. The following substatements
 are commonly used with the default value, which would make the module
 difficult to read if used everywhere they are allowed.

Boucadair & Wu Expires 7 January 2024 [Page 19]

Internet-Draft Guidelines for YANG Documents July 2023

 +==============+===============+
 | Statement | Default Value |
 +==============+===============+
 | config | true |
 +--------------+---------------+
 | mandatory | false |
 +--------------+---------------+
 | max-elements | unbounded |
 +--------------+---------------+
 | min-elements | 0 |
 +--------------+---------------+
 | ordered-by | system |
 +--------------+---------------+
 | status | current |
 +--------------+---------------+
 | yin-element | false |
 +--------------+---------------+

 Table 1: Statement Defaults

4.5. Conditional Statements

 A module may be conceptually partitioned in several ways, using the
 "if-feature" and/or "when" statements.

 Data model designers need to carefully consider all modularity
 aspects, including the use of YANG conditional statements.

 If a data definition is optional, depending on server support for a
 NETCONF or RESTCONF protocol capability, then a YANG "feature"
 statement SHOULD be defined. The defined "feature" statement SHOULD
 then be used in the conditional "if-feature" statement referencing
 the optional data definition.

 If any notification data, or any data definition, for a non-
 configuration data node is not mandatory, then the server may or may
 not be required to return an instance of this data node. If any
 conditional requirements exist for returning the data node in a
 notification payload or retrieval request, they MUST be documented
 somewhere. For example, a "when" or "if-feature" statement could
 apply to the data node, or the conditional requirements could be
 explained in a "description" statement within the data node or one of
 its ancestors (if any).

 If any "if-feature" statements apply to a list node, then the same
 "if-feature" statements MUST apply to any key leaf nodes for the
 list. There MUST NOT be any "if-feature" statements applied to any
 key leafs that do not also apply to the parent list node.

Boucadair & Wu Expires 7 January 2024 [Page 20]

Internet-Draft Guidelines for YANG Documents July 2023

 There SHOULD NOT be any "when" statements applied to a key leaf node.
 It is possible that a "when" statement for an ancestor node of a key
 leaf will have the exact node-set result as the key leaf. In such a
 case, the "when" statement for the key leaf is redundant and SHOULD
 be avoided.

4.6. XPath Usage

 This section describes guidelines for using the XML Path Language
 (XPath) [W3C.REC-xpath] within YANG modules.

4.6.1. XPath Evaluation Contexts

 YANG defines five separate contexts for evaluation of XPath
 statements:

 1. The "running" datastore: collection of all YANG configuration
 data nodes. The document root is the conceptual container (e.g.,
 "config" in the "edit-config" operation), which is the parent of
 all top-level data definition statements with a "config"
 statement value of "true".

 2. State data + the "running" datastore: collection of all YANG data
 nodes. The document root is the conceptual container, parent of
 all top-level data definition statements.

 3. Notification: an event notification document. The document root
 is the notification element.

 4. RPC Input: The document root is the conceptual "input" node,
 which is the parent of all RPC input parameter definitions.

 5. RPC Output: The document root is the conceptual "output" node,
 which is the parent of all RPC output parameter definitions.

 Note that these XPath contexts cannot be mixed. For example, a
 "when" statement in a notification context cannot reference
 configuration data.

Boucadair & Wu Expires 7 January 2024 [Page 21]

Internet-Draft Guidelines for YANG Documents July 2023

 notification foo {
 leaf mtu {
 // NOT okay because when-stmt context is this notification
 when "/if:interfaces/if:interface[name=’eth0’]";
 type leafref {
 // Okay because path-stmt has a different context
 path "/if:interfaces/if:interface/if:mtu";
 }
 }
 }

 It is especially important to consider the XPath evaluation context
 for XPath expressions defined in groupings. An XPath expression
 defined in a grouping may not be portable, meaning it cannot be used
 in multiple contexts and produce proper results.

 If the XPath expressions defined in a grouping are intended for a
 particular context, then this context SHOULD be identified in the
 "description" statement for the grouping.

4.6.2. Function Library

 The "position" and "last" functions SHOULD NOT be used. This applies
 to implicit use of the "position" function as well (e.g.,
 ’//chapter[42]’). A server is only required to maintain the relative
 XML document order of all instances of a particular user-ordered list
 or leaf-list. The "position" and "last" functions MAY be used if
 they are evaluated in a context where the context node is a user-
 ordered "list" or "leaf-list".

 The "id" function SHOULD NOT be used. The "ID" attribute is not
 present in YANG documents, so this function has no meaning. The YANG
 compiler SHOULD return an empty string for this function.

 The "namespace-uri" and "name" functions SHOULD NOT be used.
 Expanded names in XPath are different than YANG. A specific
 canonical representation of a YANG-expanded name does not exist.

 The "lang" function SHOULD NOT be used. This function does not apply
 to YANG because there is no "lang" attribute set with the document.
 The YANG compiler SHOULD return ’false’ for this function.

 The "local-name", "namespace-uri", "name", "string", and "number"
 functions SHOULD NOT be used if the argument is a node-set. If so,
 the function result will be determined by the document order of the
 node-set. Since this order can be different on each server, the
 function results can also be different. Any function call that
 implicitly converts a node-set to a string will also have this issue.

Boucadair & Wu Expires 7 January 2024 [Page 22]

Internet-Draft Guidelines for YANG Documents July 2023

 The "local-name" function SHOULD NOT be used to reference local names
 outside of the YANG module that defines the must or when expression
 containing the "local-name" function. Example of a "local-name"
 function that should not be used:

 /*[local-name()=’foo’]

 The "derived-from-or-self" function SHOULD be used instead of an
 equality expression for identityref values. This allows the
 identities to be conceptually augmented.

 Example:

 // do not use
 when "md-name-format = ’name-format-null’";

 // this is preferred
 when "derived-from-or-self(md-name-format, ’name-format-null’)";

4.6.3. Axes

 The "attribute" and "namespace" axes are not supported in YANG and
 MAY be empty in a NETCONF or RESTCONF server implementation.

 The "preceding" and "following" axes SHOULD NOT be used. These
 constructs rely on XML document order within a NETCONF or RESTCONF
 server configuration database, which may not be supported
 consistently or produce reliable results across implementations.
 Predicate expressions based on static node properties (e.g., element
 name or value, and "ancestor" or "descendant" axes) SHOULD be used
 instead. The "preceding" and "following" axes MAY be used if
 document order is not relevant to the outcome of the expression
 (e.g., check for global uniqueness of a parameter value).

 The "preceding-sibling" and "following-sibling" axes SHOULD NOT be
 used; however, they MAY be used if document order is not relevant to
 the outcome of the expression.

 A server is only required to maintain the relative XML document order
 of all instances of a particular user-ordered list or leaf-list. The
 "preceding-sibling" and "following-sibling" axes MAY be used if they
 are evaluated in a context where the context node is a user-ordered
 "list" or "leaf-list".

Boucadair & Wu Expires 7 January 2024 [Page 23]

Internet-Draft Guidelines for YANG Documents July 2023

4.6.4. Types

 Data nodes that use the "int64" and "uint64" built-in type SHOULD NOT
 be used within numeric or boolean expressions. There are boundary
 conditions in which the translation from the YANG 64-bit type to an
 XPath number can cause incorrect results. Specifically, an XPath
 "double" precision floating-point number cannot represent very large
 positive or negative 64-bit numbers because it only provides a total
 precision of 53 bits. The "int64" and "uint64" data types MAY be
 used in numeric expressions if the value can be represented with no
 more than 53 bits of precision.

 Data modelers need to be careful not to confuse the YANG value space
 and the XPath value space. The data types are not the same in both,
 and conversion between YANG and XPath data types SHOULD be considered
 carefully.

 Explicit XPath data type conversions MAY be used (e.g., "string",
 "boolean", or "number" functions), instead of implicit XPath data
 type conversions.

 XPath expressions that contain a literal value representing a YANG
 identity SHOULD always include the declared prefix of the module
 where the identity is defined.

 XPath expressions for "when" statements SHOULD NOT reference the
 context node or any descendant nodes of the context node. They MAY
 reference descendant nodes if the "when" statement is contained
 within an "augment" statement, and the referenced nodes are not
 defined within the "augment" statement.

 Example:

 augment "/rt:active-route/rt:input/rt:destination-address" {
 when "rt:address-family=’v4ur:ipv4-unicast’" {
 description
 "This augment is valid only for IPv4 unicast.";
 }
 // nodes defined here within the augment-stmt
 // cannot be referenced in the when-stmt
 }

4.6.5. Wildcards

 It is possible to construct XPath expressions that will evaluate
 differently when combined with several modules within a server
 implementation rather than when evaluated within the single module.
 This is due to augmenting nodes from other modules.

Boucadair & Wu Expires 7 January 2024 [Page 24]

Internet-Draft Guidelines for YANG Documents July 2023

 Wildcard expansion is done within a server against all the nodes from
 all namespaces, so it is possible for a "must" or "when" expression
 that uses the ’*’ operator to always evaluate to false if processed
 within a single YANG module. In such cases, the "description"
 statement SHOULD clarify that augmenting objects are expected to
 match the wildcard expansion.

 when /foo/services/*/active {
 description
 "No services directly defined in this module.
 Matches objects that have augmented the services container.";
 }

4.6.6. Boolean Expressions

 The YANG "must" and "when" statements use an XPath boolean expression
 to define the test condition for the statement. It is important to
 specify these expressions in a way that will not cause inadvertent
 changes in the result if the objects referenced in the expression are
 updated in future revisions of the module.

 For example, the leaf "foo2" must exist if the leaf "foo1" is equal
 to "one" or "three":

 leaf foo1 {
 type enumeration {
 enum one;
 enum two;
 enum three;
 }
 }

 leaf foo2 {
 // INCORRECT
 must "/f:foo1 != ’two’";
 type string;
 }
 leaf foo2 {
 // CORRECT
 must "/f:foo1 = ’one’ or /f:foo1 = ’three’";
 type string;
 }

 In the next revision of the module, leaf "foo1" is extended with a
 new enum named "four":

Boucadair & Wu Expires 7 January 2024 [Page 25]

Internet-Draft Guidelines for YANG Documents July 2023

 leaf foo1 {
 type enumeration {
 enum one;
 enum two;
 enum three;
 enum four;
 }
 }

 Now the first XPath expression will allow the enum "four" to be
 accepted in addition to the "one" and "three" enum values.

4.7. YANG Definition Lifecycle Management

 The YANG status statement MUST be present within a definition if its
 value is "deprecated" or "obsolete". The status SHOULD NOT be
 changed from "current" directly to "obsolete". An object SHOULD be
 available for at least one year with a "deprecated" status before it
 is changed to "obsolete".

 The module or submodule name MUST NOT be changed, once the document
 containing the module or submodule is published.

 The module namespace URI value MUST NOT be changed, once the document
 containing the module is published.

 The revision date substatement within the import statement SHOULD be
 present if any groupings are used from the external module.

 The revision date substatement within the include statement SHOULD be
 present if any groupings are used from the external submodule.

 If an import statement is for a module from a stable source (e.g., an
 RFC for an IETF module), then a reference-stmt SHOULD be present
 within an import statement.

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 If submodules are used, then the document containing the main module
 MUST be updated so that the main module revision date is equal to or
 more recent than the revision date of any submodule that is (directly
 or indirectly) included by the main module.

 Definitions for future use SHOULD NOT be specified in a module. Do
 not specify placeholder objects like the "reserved" example below:

Boucadair & Wu Expires 7 January 2024 [Page 26]

Internet-Draft Guidelines for YANG Documents July 2023

 leaf reserved {
 type string;
 description
 "This object has no purpose at this time, but a future
 revision of this module might define a purpose
 for this object.";
 }
 }

4.8. Module Header, Meta, and Revision Statements

 For published modules, the namespace MUST be a globally unique URI,
 as defined in [RFC3986]. This value is usually assigned by the IANA.

 The "organization" statement MUST be present. If the module is
 contained in a document intended for IETF Standards Track status,
 then the organization SHOULD be the IETF working group (WG) chartered
 to write the document. For other standards organizations, a similar
 approach is also suggested.

 The "contact" statement MUST be present. If the module is contained
 in a document intended for Standards Track status, then the WG web
 and mailing information SHOULD be present, and the main document
 author or editor contact information SHOULD be present. If
 additional authors or editors exist, their contact information MAY be
 present. There is no need to include the contact information for WG
 Chairs.

 The "description" statement MUST be present. For modules published
 within IETF documents, the appropriate IETF Trust Copyright text MUST
 be present, as described in Section 3.1.

 If the module relies on information contained in other documents,
 which are not the same documents implied by the import statements
 present in the module, then these documents MUST be identified in the
 reference statement.

 A "revision" statement MUST be present for each published version of
 the module. The "revision" statement MUST have a "reference"
 substatement. It MUST identify the published document that contains
 the module. Modules are often extracted from their original
 documents, and it is useful for developers and operators to know how
 to find the original source document in a consistent manner. The
 "revision" statement MAY have a "description" substatement.

 The following example shows the revision statement for a published
 YANG module:

Boucadair & Wu Expires 7 January 2024 [Page 27]

Internet-Draft Guidelines for YANG Documents July 2023

 revision "2012-02-22" {
 description
 "Initial version";
 reference
 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

 For an unpublished module, a complete history of each unpublished
 module revision is not required. That is, within a sequence of draft
 versions, only the most recent revision need be recorded in the
 module. Do not remove or reuse a revision statement for a published
 module. A new revision date is not required unless the module
 contents have changed. If the module contents have changed, then the
 revision date of that new module version MUST be updated to a date
 later than that of the previous version.

 The following example shows the two revision statements for an
 unpublished update to a published YANG module:

 revision "2017-12-11" {
 description
 "Added support for YANG 1.1 actions and notifications tied to
 data nodes. Clarify how NACM extensions can be used by other
 data models.";
 reference
 "RFC YYYY: Network Configuration Access Control Model";
 }

 revision "2012-02-22" {
 description
 "Initial version";
 reference
 "RFC 6536: Network Configuration Protocol (NETCONF)
 Access Control Model";
 }

4.9. Namespace Assignments

 It is RECOMMENDED that only valid YANG modules be included in
 documents, whether or not the modules are published yet. This
 allows:

 * the module to compile correctly instead of generating disruptive
 fatal errors.

 * early implementors to use the modules without picking a random
 value for the XML namespace.

Boucadair & Wu Expires 7 January 2024 [Page 28]

Internet-Draft Guidelines for YANG Documents July 2023

 * early interoperability testing since independent implementations
 will use the same XML namespace value.

 Until a URI is assigned by the IANA, a proposed namespace URI MUST be
 provided for the namespace statement in a YANG module. A value
 SHOULD be selected that is not likely to collide with other YANG
 namespaces. Standard module names, prefixes, and URI strings already
 listed in the "YANG Module Names" registry MUST NOT be used.

 A standard namespace statement value SHOULD have the following form:

 <URN prefix string>:<module-name>

 The following URN prefix string SHOULD be used for published and
 unpublished YANG modules:

 urn:ietf:params:xml:ns:yang:

 The following example URNs would be valid namespace statement values
 for Standards Track modules:

 urn:ietf:params:xml:ns:yang:ietf-netconf-partial-lock

 urn:ietf:params:xml:ns:yang:ietf-netconf-state

 urn:ietf:params:xml:ns:yang:ietf-netconf

 Note that a different URN prefix string SHOULD be used for modules
 that are not Standards Track. The string SHOULD be selected
 according to the guidelines in [RFC7950].

 The following URIs exemplify what might be used by modules that are
 not Standards Track. Note that the domain "example.com" SHOULD be
 used by example modules in IETF I-Ds. These URIs are not intended to
 be dereferenced. They are used for module namespace identification
 only.

 Example URIs using URLs per [RFC3986]:

 https://example.com/ns/example-interfaces

 https://example.com/ns/example-system

 Example URIs using tags per [RFC4151]:

 tag:example.com,2017:example-interfaces

 tag:example.com,2017:example-system

Boucadair & Wu Expires 7 January 2024 [Page 29]

Internet-Draft Guidelines for YANG Documents July 2023

4.10. Top-Level Data Definitions

 The top-level data organization SHOULD be considered carefully, in
 advance. Data model designers need to consider how the functionality
 for a given protocol or protocol family will grow over time.

 The separation of configuration data and operational state SHOULD be
 considered carefully. It is sometimes useful to define separate top-
 level containers for configuration and non-configuration data. For
 some existing top-level data nodes, configuration data was not in
 scope, so only one container representing operational state was
 created. Refer to NMDA [RFC8342] for details.

 The number of top-level data nodes within a module SHOULD be
 minimized. It is often useful to retrieve related information within
 a single subtree. If data is too distributed, it becomes difficult
 to retrieve all at once.

 The names and data organization SHOULD reflect persistent
 information, such as the name of a protocol. The name of the working
 group SHOULD NOT be used because this may change over time.

 A mandatory database data definition is defined as a node that a
 client must provide for the database to be valid. The server is not
 required to provide a value.

 Top-level database data definitions MUST NOT be mandatory. If a
 mandatory node appears at the top level, it will immediately cause
 the database to be invalid. This can occur when the server boots or
 when a module is loaded dynamically at runtime.

4.11. Data Types

 Selection of an appropriate data type (i.e., built-in type, existing
 derived type, or new derived type) is very subjective; therefore, few
 requirements can be specified on that subject.

 Data model designers SHOULD use the most appropriate built-in data
 type for the particular application.

 The signed numeric data types (i.e., "int8", "int16", "int32", and
 "int64") SHOULD NOT be used unless negative values are allowed for
 the desired semantics.

Boucadair & Wu Expires 7 January 2024 [Page 30]

Internet-Draft Guidelines for YANG Documents July 2023

4.11.1. Fixed-Value Extensibility

 If the set of values is fixed and the data type contents are
 controlled by a single naming authority, then an enumeration data
 type SHOULD be used.

 leaf foo {
 type enumeration {
 enum one;
 enum two;
 }
 }

 If extensibility of enumerated values is required, then the
 "identityref" data type SHOULD be used instead of an enumeration or
 other built-in type.

 identity foo-type {
 description "Base for the extensible type";
 }

 identity one {
 base f:foo-type;
 }

 identity two {
 base f:foo-type;
 }

 leaf foo {
 type identityref {
 base f:foo-type;
 }
 }

 Note that any module can declare an identity with base "foo-type"
 that is valid for the "foo" leaf. Identityref values are considered
 to be qualified names.

4.11.2. Patterns and Ranges

 For string data types, if a machine-readable pattern can be defined
 for the desired semantics, then one or more pattern statements SHOULD
 be present. A single-quoted string SHOULD be used to specify the
 pattern, since a double-quoted string can modify the content. If the
 patterns used in a type definition have known limitations such as
 false negative or false positive matches, then these limitations
 SHOULD be documented within the typedef or data definition.

Boucadair & Wu Expires 7 January 2024 [Page 31]

Internet-Draft Guidelines for YANG Documents July 2023

 The following typedef from [RFC6991] demonstrates the proper use of
 the "pattern" statement:

 typedef ipv4-address-no-zone {
 type inet:ipv4-address {
 pattern ’[0-9\.]*’;
 }
 ...
 }

 For string data types, if the length of the string is required to be
 bounded in all implementations, then a length statement MUST be
 present.

 The following typedef from [RFC6991] demonstrates the proper use of
 the "length" statement:

 typedef yang-identifier {
 type string {
 length "1..max";
 pattern ’[a-zA-Z_][a-zA-Z0-9\-_.]*’;
 pattern ’.|..|[^xX].*|.[^mM].*|..[^lL].*’;
 }
 ...
 }

 For numeric data types, if the values allowed by the intended
 semantics are different than those allowed by the unbounded intrinsic
 data type (e.g., "int32"), then a range statement SHOULD be present.

 The following typedef from [RFC6991] demonstrates the proper use of
 the "range" statement:

 typedef dscp {
 type uint8 {
 range "0..63";
 }
 ...
 }

4.11.3. Enumerations and Bits

 For "enumeration" or "bits" data types, the semantics for each "enum"
 or "bit" SHOULD be documented. A separate "description" statement
 (within each "enum" or "bit" statement) SHOULD be present.

Boucadair & Wu Expires 7 January 2024 [Page 32]

Internet-Draft Guidelines for YANG Documents July 2023

 leaf foo {
 // INCORRECT
 type enumeration {
 enum one;
 enum two;
 }
 description
 "The foo enum...
 one: The first enum
 two: The second enum";
 }
 leaf foo {
 // CORRECT
 type enumeration {
 enum one {
 description "The first enum";
 }
 enum two {
 description "The second enum";
 }
 }
 description
 "The foo enum... ";
 }

4.11.4. Union Types

 The YANG "union" type is evaluated by testing a value against each
 member type in the union. The first type definition that accepts a
 value as valid is the member type used. In general, member types
 SHOULD be ordered from most restrictive to least restrictive types.

 In the following example, the "enumeration" type will never be
 matched because the preceding "string" type will match everything.

 Incorrect:

 type union {
 type string;
 type enumeration {
 enum up;
 enum down;
 }
 }

 Correct:

Boucadair & Wu Expires 7 January 2024 [Page 33]

Internet-Draft Guidelines for YANG Documents July 2023

 type union {
 type enumeration {
 enum up;
 enum down;
 }
 type string;
 }

 It is possible for different member types to match, depending on the
 input encoding format. In XML, all values are passed as string
 nodes; but in JSON, there are different value types for numbers,
 booleans, and strings.

 In the following example, a JSON numeric value will always be matched
 by the "int32" type, but in XML the string value representing a
 number will be matched by the "string" type. The second version will
 match the "int32" member type no matter how the input is encoded.

 Incorrect:

 type union {
 type string;
 type int32;
 }

 Correct:

 type union {
 type int32;
 type string;
 }

4.11.5. Empty and Boolean

 YANG provides an "empty" data type, which has one value (i.e.,
 present). The default is "not present", which is not actually a
 value. When used within a list key, only one value can (and must)
 exist for this key leaf. The type "empty" SHOULD NOT be used for a
 key leaf since it is pointless.

 There is really no difference between a leaf of type "empty" and a
 leaf-list of type "empty". Both are limited to one instance. The
 type "empty" SHOULD NOT be used for a leaf-list.

 The advantage of using type "empty" instead of type "boolean" is that
 the default (not present) does not take up any bytes in a
 representation. The disadvantage is that the client may not be sure
 if an empty leaf is missing because it was filtered somehow or not

Boucadair & Wu Expires 7 January 2024 [Page 34]

Internet-Draft Guidelines for YANG Documents July 2023

 implemented. The client may not have a complete and accurate schema
 for the data returned by the server and may not be aware of the
 missing leaf.

 The YANG "boolean" data type provides two values ("true" and
 "false"). When used within a list key, two entries can exist for
 this key leaf. Default values are ignored for key leafs, but a
 default statement is often used for plain boolean leafs. The
 advantage of the "boolean" type is that the leaf or leaf-list has a
 clear representation for both values. The default value is usually
 not returned unless explicitly requested by the client, so no bytes
 are used in a typical representation.

 In general, the "boolean" data type SHOULD be used instead of the
 "empty" data type, as shown in the example below:

 Incorrect:

 leaf flag1 {
 type empty;
 }

 Correct:

 leaf flag2 {
 type boolean;
 default false;
 }

4.12. Reusable Type Definitions

 If an appropriate derived type exists in any standard module, such as
 [RFC6991], then it SHOULD be used instead of defining a new derived
 type.

 If an appropriate units identifier can be associated with the desired
 semantics, then a units statement SHOULD be present.

 If an appropriate default value can be associated with the desired
 semantics, then a default statement SHOULD be present.

 If a significant number of derived types are defined, and it is
 anticipated that these data types will be reused by multiple modules,
 then these derived types SHOULD be contained in a separate module or
 submodule, to allow easier reuse without unnecessary coupling.

 The "description" statement MUST be present.

Boucadair & Wu Expires 7 January 2024 [Page 35]

Internet-Draft Guidelines for YANG Documents July 2023

 If the type definition semantics are defined in an external document
 (other than another YANG module indicated by an import statement),
 then the reference statement MUST be present.

4.13. Reusable Groupings

 A reusable grouping is a YANG grouping that can be imported by
 another module and is intended for use by other modules. This is not
 the same as a grouping that is used within the module in which it is
 defined, but it happens to be exportable to another module because it
 is defined at the top level of the YANG module.

 The following guidelines apply to reusable groupings, in order to
 make them as robust as possible:

 * Clearly identify the purpose of the grouping in the "description"
 statement.

 * There are five different XPath contexts in YANG (rpc/input, rpc/
 output, notification, "config true" data nodes, and all data
 nodes). Clearly identify which XPath contexts are applicable or
 excluded for the grouping.

 * Do not reference data outside the grouping in any "path", "must",
 or "when" statements.

 * Do not include a "default" substatement on a leaf or choice unless
 the value applies on all possible contexts.

 * Do not include a "config" substatement on a data node unless the
 value applies on all possible contexts.

 * Clearly identify any external dependencies in the grouping
 "description" statement, such as nodes referenced by an absolute
 path from a "path", "must", or "when" statement.

4.14. Data Definitions

 The "description" statement MUST be present in the following YANG
 statements:

 * anyxml

 * augment

 * choice

 * container

Boucadair & Wu Expires 7 January 2024 [Page 36]

Internet-Draft Guidelines for YANG Documents July 2023

 * extension

 * feature

 * grouping

 * identity

 * leaf

 * leaf-list

 * list

 * notification

 * rpc

 * typedef

 If the data definition semantics are defined in an external document,
 (other than another YANG module indicated by an import statement),
 then a reference statement MUST be present.

 The "anyxml" construct may be useful to represent an HTML banner
 containing markup elements, such as "" and "", and MAY be used
 in such cases. However, this construct SHOULD NOT be used if other
 YANG data node types can be used instead to represent the desired
 syntax and semantics.

 It has been found that the "anyxml" statement is not implemented
 consistently across all servers. It is possible that mixed-mode XML
 will not be supported or that configuration anyxml nodes will not
 supported.

 If there are referential integrity constraints associated with the
 desired semantics that can be represented with XPath, then one or
 more "must" statements SHOULD be present.

 For list and leaf-list data definitions, if the number of possible
 instances is required to be bounded for all implementations, then the
 max-elements statements SHOULD be present.

 If any "must" or "when" statements are used within the data
 definition, then the data definition "description" statement SHOULD
 describe the purpose of each one.

Boucadair & Wu Expires 7 January 2024 [Page 37]

Internet-Draft Guidelines for YANG Documents July 2023

 The "choice" statement is allowed to be directly present within a
 "case" statement in YANG 1.1. This needs to be considered carefully.
 Consider simply including the nested "choice" as additional "case"
 statements within the parent "choice" statement. Note that the
 "mandatory" and "default" statements within a nested "choice"
 statement only apply if the "case" containing the nested "choice"
 statement is first selected.

 If a list defines any key leafs, then these leafs SHOULD be defined
 in order, as the first child nodes within the list. The key leafs
 MAY be in a different order in some cases, e.g., they are defined in
 a grouping, and not inline in the list statement.

4.14.1. Non-Presence Containers

 A non-presence container is used to organize data into specific
 subtrees. It is not intended to have semantics within the data model
 beyond this purpose, although YANG allows it (e.g., a "must"
 statement within the non-presence container).

 Example using container wrappers:

 container top {
 container foos {
 list foo { ... }
 }
 container bars {
 list bar { ... }
 }
 }

 Example without container wrappers:

 container top {
 list foo { ... }
 list bar { ... }
 }

 Use of non-presence containers to organize data is a subjective
 matter similar to use of subdirectories in a file system. Although
 these containers do not have any semantics, they can impact protocol
 operations for the descendant data nodes within a non-presence
 container, so use of these containers SHOULD be considered carefully.

 The NETCONF and RESTCONF protocols do not currently support the
 ability to delete all list (or leaf-list) entries at once. This
 deficiency is sometimes avoided by use of a parent container (i.e.,
 deleting the container also removes all child entries).

Boucadair & Wu Expires 7 January 2024 [Page 38]

Internet-Draft Guidelines for YANG Documents July 2023

4.14.2. Top-Level Data Nodes

 Use of top-level objects needs to be considered carefully:

 * top-level siblings are not ordered

 * top-level siblings are not static and depend on the modules that
 are loaded

 * for subtree filtering, retrieval of a top-level leaf-list will be
 treated as a content-match node for all top-level-siblings

 * a top-level list with many instances may impact performance

4.15. Operation Definitions

 If the operation semantics are defined in an external document (other
 than another YANG module indicated by an import statement), then a
 reference statement MUST be present.

 If the operation impacts system behavior in some way, it SHOULD be
 mentioned in the "description" statement.

 If the operation is potentially harmful to system behavior in some
 way, it MUST be mentioned in the Security Considerations section of
 the document.

4.16. Notification Definitions

 The "description" statement MUST be present.

 If the notification semantics are defined in an external document
 (other than another YANG module indicated by an import statement),
 then a reference statement MUST be present.

 If the notification refers to a specific resource instance, then this
 instance SHOULD be identified in the notification data. This is
 usually done by including "leafref" leaf nodes with the key leaf
 values for the resource instance. For example:

 notification interface-up {
 description "Sent when an interface is activated.";
 leaf name {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 }
 }

Boucadair & Wu Expires 7 January 2024 [Page 39]

Internet-Draft Guidelines for YANG Documents July 2023

 Note that there are no formal YANG statements to identify any data
 node resources associated with a notification. The "description"
 statement for the notification SHOULD specify if and how the
 notification identifies any data node resources associated with the
 specific event.

4.17. Feature Definitions

 The YANG "feature" statement is used to define a label for a set of
 optional functionality within a module. The "if-feature" statement
 is used in the YANG statements associated with a feature. The
 description-stmt within a feature-stmt MUST specify any interactions
 with other features.

 The set of YANG features defined in a module should be considered
 carefully. Very fine granular features increase interoperability
 complexity and should be avoided. A likely misuse of the feature
 mechanism is the tagging of individual leafs (e.g., counters) with
 separate features.

 If there is a large set of objects associated with a YANG feature,
 then consider moving those objects to a separate module, instead of
 using a YANG feature. Note that the set of features within a module
 is easily discovered by the reader, but the set of related modules
 within the entire YANG library is not as easy to identify. Module
 names with a common prefix can help readers identify the set of
 related modules, but this assumes the reader will have discovered and
 installed all the relevant modules.

 Another consideration for deciding whether to create a new module or
 add a YANG feature is the stability of the module in question. It
 may be desirable to have a stable base module that is not changed
 frequently. If new functionality is placed in a separate module,
 then the base module does not need to be republished. If it is
 designed as a YANG feature, then the module will need to be
 republished.

 If one feature requires implementation of another feature, then an
 "if-feature" statement SHOULD be used in the dependent "feature"
 statement.

 For example, feature2 requires implementation of feature1:

Boucadair & Wu Expires 7 January 2024 [Page 40]

Internet-Draft Guidelines for YANG Documents July 2023

 feature feature1 {
 description "Some protocol feature";
 }

 feature feature2 {
 if-feature "feature1";
 description "Another protocol feature";
 }

4.18. YANG Data Node Constraints

4.18.1. Controlling Quantity

 The "min-elements" and "max-elements" statements can be used to
 control how many list or leaf-list instances are required for a
 particular data node. YANG constraint statements SHOULD be used to
 identify conditions that apply to all implementations of the data
 model. If platform-specific limitations (e.g., the "max-elements"
 supported for a particular list) are relevant to operations, then a
 data model definition statement (e.g., "max-ports" leaf) SHOULD be
 used to identify the limit.

4.18.2. "must" versus "when"

 "must" and "when" YANG statements are used to provide cross-object
 referential tests. They have very different behavior. The "when"
 statement causes data node instances to be silently deleted as soon
 as the condition becomes false. A false "when" expression is not
 considered to be an error.

 The "when" statement SHOULD be used together with "augment" or "uses"
 statements to achieve conditional model composition. The condition
 SHOULD be based on static properties of the augmented entry (e.g.,
 list key leafs).

 The "must" statement causes a datastore validation error if the
 condition is false. This statement SHOULD be used for enforcing
 parameter value restrictions that involve more than one data node
 (e.g., end-time parameter must be after the start-time parameter).

4.19. "augment" Statements

 The YANG "augment" statement is used to define a set of data
 definition statements that will be added as child nodes of a target
 data node. The module namespace for these data nodes will be the
 augmenting module, not the augmented module.

Boucadair & Wu Expires 7 January 2024 [Page 41]

Internet-Draft Guidelines for YANG Documents July 2023

 A top-level "augment" statement SHOULD NOT be used if the target data
 node is in the same module or submodule as the evaluated "augment"
 statement. The data definition statements SHOULD be added inline
 instead.

4.19.1. Conditional Augment Statements

 The "augment" statement is often used together with the "when"
 statement and/or "if-feature" statement to make the augmentation
 conditional on some portion of the data model.

 The following example from [RFC7223] shows how a conditional
 container called "ethernet" is added to the "interface" list only for
 entries of the type "ethernetCsmacd".

 augment "/if:interfaces/if:interface" {
 when "if:type = ’ianaift:ethernetCsmacd’";

 container ethernet {
 leaf duplex {
 ...
 }
 }
 }

4.19.2. Conditionally Mandatory Data Definition Statements

 YANG has very specific rules about how configuration data can be
 updated in new releases of a module. These rules allow an "old
 client" to continue interoperating with a "new server".

 If data nodes are added to an existing entry, the old client MUST NOT
 be required to provide any mandatory parameters that were not in the
 original module definition.

 It is possible to add conditional "augment" statements such that the
 old client would not know about the new condition and would not
 specify the new condition. The conditional "augment" statement can
 contain mandatory objects only if the condition is false, unless
 explicitly requested by the client.

 Only a conditional "augment" statement that uses the "when" statement
 form of a condition can be used in this manner. The YANG features
 enabled on the server cannot be controlled by the client in any way,
 so it is not safe to add mandatory augmenting data nodes based on the
 "if-feature" statement.

Boucadair & Wu Expires 7 January 2024 [Page 42]

Internet-Draft Guidelines for YANG Documents July 2023

 The XPath "when" statement condition MUST NOT reference data outside
 of the target data node because the client does not have any control
 over this external data.

 In the following dummy example, it is okay to augment the "interface"
 entry with "mandatory-leaf" because the augmentation depends on
 support for "some-new-iftype". The old client does not know about
 this type, so it would never select this type; therefore, it would
 not add a mandatory data node.

 module example-module {

 yang-version 1.1;
 namespace "tag:example.com,2017:example-module";
 prefix mymod;

 import iana-if-type { prefix iana; }
 import ietf-interfaces { prefix if; }

 identity some-new-iftype {
 base iana:iana-interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = ’mymod:some-new-iftype’";

 leaf mandatory-leaf {
 type string;
 mandatory true;
 }
 }
 }

 Note that this practice is safe only for creating data resources. It
 is not safe for replacing or modifying resources if the client does
 not know about the new condition. The YANG data model MUST be
 packaged in a way that requires the client to be aware of the
 mandatory data nodes if it is aware of the condition for this data.
 In the example above, the "some-new-iftype" identity is defined in
 the same module as the "mandatory-leaf" data definition statement.

 This practice is not safe for identities defined in a common module
 such as "iana-if-type" because the client is not required to know
 about "my-module" just because it knows about the "iana-if-type"
 module.

Boucadair & Wu Expires 7 January 2024 [Page 43]

Internet-Draft Guidelines for YANG Documents July 2023

4.20. Deviation Statements

 Per RFC 7950, Section 7.20.3, the YANG "deviation" statement is not
 allowed to appear in IETF YANG modules, but it can be useful for
 documenting server capabilities. Deviation statements are not
 reusable and typically not shared across all platforms.

 There are several reasons that deviations might be needed in an
 implementation, e.g., an object cannot be supported on all platforms,
 or feature delivery is done in multiple development phases.
 Deviation statements can also be used to add annotations to a module,
 which does not affect the conformance requirements for the module.

 It is suggested that deviation statements be defined in separate
 modules from regular YANG definitions. This allows the deviations to
 be platform specific and/or temporary.

 The order that deviation statements are evaluated can affect the
 result. Therefore, multiple deviation statements in the same module,
 for the same target object, SHOULD NOT be used.

 The "max-elements" statement is intended to describe an architectural
 limit to the number of list entries. It is not intended to describe
 platform limitations. It is better to use a "deviation" statement
 for the platforms that have a hard resource limit.

 Example documenting platform resource limits:

 Wrong: (max-elements in the list itself)

 container backups {
 list backup {
 ...
 max-elements 10;
 ...
 }
 }

 Correct: (max-elements in a deviation)

 deviation /bk:backups/bk:backup {
 deviate add {
 max-elements 10;
 }
 }

Boucadair & Wu Expires 7 January 2024 [Page 44]

Internet-Draft Guidelines for YANG Documents July 2023

4.21. Extension Statements

 The YANG "extension" statement is used to specify external
 definitions. This appears in the YANG syntax as an "unknown-
 statement". Usage of extension statements in a published module
 needs to be considered carefully.

 The following guidelines apply to the usage of YANG extensions:

 * The semantics of the extension MUST NOT contradict any YANG
 statements. Extensions can add semantics not covered by the
 normal YANG statements.

 * The module containing the extension statement MUST clearly
 identify the conformance requirements for the extension. It
 should be clear whether all implementations of the YANG module
 containing the extension need to also implement the extension. If
 not, identify what conditions apply that would require
 implementation of the extension.

 * The extension MUST clearly identify where it can be used within
 other YANG statements.

 * The extension MUST clearly identify if YANG statements or other
 extensions are allowed or required within the extension as
 substatements.

4.22. Data Correlation

 Data can be correlated in various ways, using common data types,
 common data naming, and common data organization. There are several
 ways to extend the functionality of a module, based on the degree of
 coupling between the old and new functionality:

 inline: update the module with new protocol-accessible objects. The
 naming and data organization of the original objects is used. The
 new objects are in the original module namespace.

 augment: create a new module with new protocol-accessible objects
 that augment the original data structure. The naming and data
 organization of the original objects is used. The new objects are
 in the new module namespace.

 mirror: create new objects in a new module or the original module,
 except use a new naming scheme and data location. The naming can
 be coupled in different ways. Tight coupling is achieved with a
 "leafref" data type, with the "require-instance" substatement set
 to "true". This method SHOULD be used.

Boucadair & Wu Expires 7 January 2024 [Page 45]

Internet-Draft Guidelines for YANG Documents July 2023

 If the new data instances are not limited to the values in use in the
 original data structure, then the "require-instance" substatement
 MUST be set to "false". Loose coupling is achieved by using key
 leafs with the same data type as the original data structure. This
 has the same semantics as setting the "require-instance" substatement
 to "false".

 The relationship between configuration and operational state has been
 clarified in NMDA [RFC8342].

4.22.1. Use of "leafref" for Key Correlation

 Sometimes it is not practical to augment a data structure. For
 example, the correlated data could have different keys or contain
 mandatory nodes.

 The following example shows the use of the "leafref" data type for
 data correlation purposes:

 Not preferred:

 list foo {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 list foo-addon {
 key name;
 config false;
 leaf name {
 type string;
 }
 ...
 }

 Preferred:

Boucadair & Wu Expires 7 January 2024 [Page 46]

Internet-Draft Guidelines for YANG Documents July 2023

 list foo {
 key name;
 leaf name {
 type string;
 }
 ...
 }

 list foo-addon {
 key name;
 config false;
 leaf name {
 type leafref {
 path "/foo/name";
 require-instance false;
 }
 }
 leaf addon {
 type string;
 mandatory true;
 }
 }

4.23. Operational State

 The modeling of operational state with YANG has been refined over
 time. At first, only data that has a "config" statement value of
 "false" was considered to be operational state. This data was not
 considered to be part of any datastore, which made the YANG XPath
 definition much more complicated.

 Operational state is now modeled using YANG according to the new NMDA
 [RFC8342] and conceptually contained in the operational state
 datastore, which also includes the operational values of
 configuration data. There is no longer any need to duplicate data
 structures to provide separate configuration and operational state
 sections.

 This section describes some data modeling issues related to
 operational state and guidelines for transitioning YANG data model
 design to be NMDA compatible.

Boucadair & Wu Expires 7 January 2024 [Page 47]

Internet-Draft Guidelines for YANG Documents July 2023

4.23.1. Combining Operational State and Configuration Data

 If possible, operational state SHOULD be combined with its associated
 configuration data. This prevents duplication of key leafs and
 ancestor nodes. It also prevents race conditions for retrieval of
 dynamic entries and allows configuration and operational state to be
 retrieved together with minimal message overhead.

 container foo {
 ...
 // contains "config true" and "config false" nodes that have
 // no corresponding "config true" object (e.g., counters)
 }

4.23.2. Representing Operational Values of Configuration Data

 If possible, the same data type SHOULD be used to represent the
 configured value and the operational value, for a given leaf or leaf-
 list object.

 Sometimes the configured value set is different than the operational
 value set for that object, for example, the "admin-status" and "oper-
 status" leafs in [RFC8343]. In this case, a separate object MAY be
 used to represent the configured and operational values.

 Sometimes the list keys are not identical for configuration data and
 the corresponding operational state. In this case, separate lists
 MAY be used to represent the configured and operational values.

 If it is not possible to combine configuration and operational state,
 then the keys used to represent list entries SHOULD be the same type.
 The "leafref" data type SHOULD be used in operational state for key
 leafs that have corresponding configuration instances. The "require-
 instance" statement MAY be set to "false" (in YANG 1.1 modules only)
 to indicate instances are allowed in the operational state that do
 not exist in the associated configuration data.

 The need to replicate objects or define different operational state
 objects depends on the data model. It is not possible to define one
 approach that will be optimal for all data models.

 Designers SHOULD describe and justify any NMDA exceptions in detail,
 such as the use of separate subtrees and/or separate leafs. The
 "description" statements for both the configuration and the
 operational state SHOULD be used for this purpose.

Boucadair & Wu Expires 7 January 2024 [Page 48]

Internet-Draft Guidelines for YANG Documents July 2023

4.23.3. NMDA Transition Guidelines

 YANG modules SHOULD be designed with the assumption that they will be
 used on servers supporting the operational state datastore. With
 this in mind, YANG modules SHOULD define "config false" nodes
 wherever they make sense to the data model. "Config false" nodes
 SHOULD NOT be defined to provide the operational value for
 configuration nodes, except when the value space of a configured and
 operational value may differ, in which case a distinct "config false"
 node SHOULD be defined to hold the operational value for the
 configured node.

 The following guidelines are meant to help modelers develop YANG
 modules that will maximize the utility of the model with both current
 and new implementations.

 New modules and modules that are not concerned with the operational
 state of configuration information SHOULD immediately be structured
 to be NMDA compatible, as described in Section 4.23.1. This
 transition MAY be deferred if the module does not contain any
 configuration datastore objects.

 The remaining are options that MAY be followed during the time that
 NMDA mechanisms are being defined.

 (a) Modules that require immediate support for the NMDA features
 SHOULD be structured for NMDA. A temporary non-NMDA version of
 this type of module MAY exist, as either an existing model or a
 model created by hand or with suitable tools that mirror the
 current modeling strategies. Both the NMDA and the non-NMDA
 modules SHOULD be published in the same document, with NMDA
 modules in the document main body and the non-NMDA modules in a
 non-normative appendix. The use of the non-NMDA module will
 allow temporary bridging of the time period until NMDA
 implementations are available.

 (b) For published models, the model should be republished with an
 NMDA-compatible structure, deprecating non-NMDA constructs. For
 example, the "ietf-interfaces" model in [RFC7223] has been
 restructured as an NMDA-compatible model in [RFC8343]. The
 "/interfaces-state" hierarchy has been marked "status
 deprecated". Models that mark their "/foo-state" hierarchy with
 "status deprecated" will allow NMDA-capable implementations to
 avoid the cost of duplicating the state nodes, while enabling
 non-NMDA-capable implementations to utilize them for access to
 the operational values.

Boucadair & Wu Expires 7 January 2024 [Page 49]

Internet-Draft Guidelines for YANG Documents July 2023

 (c) For models that augment models that have not been structured
 with the NMDA, the modeler will have to consider the structure
 of the base model and the guidelines listed above. Where
 possible, such models should move to new revisions of the base
 model that are NMDA compatible. When that is not possible,
 augmenting "state" containers SHOULD be avoided, with the
 expectation that the base model will be re-released with the
 state containers marked as deprecated. It is RECOMMENDED to
 augment only the "/foo" hierarchy of the base model. Where this
 recommendation cannot be followed, then any new "state" elements
 SHOULD be included in their own module.

4.23.3.1. Temporary Non-NMDA Modules

 A temporary non-NMDA module allows a non-NMDA-aware client to access
 operational state from an NMDA-compliant server. It contains the
 top-level "config false" data nodes that would have been defined in a
 legacy YANG module (before NMDA).

 A server that needs to support both NMDA and non-NMDA clients can
 advertise both the new NMDA module and the temporary non-NMDA module.
 A non-NMDA client can use separate "foo" and "foo-state" subtrees,
 except the "foo-state" subtree is located in a different (temporary)
 module. The NMDA module can be used by a non-NMDA client to access
 the conventional configuration datastores and the deprecated <get>
 operation to access nested "config false" data nodes.

 To create the temporary non-NMDA model from an NMDA model, the
 following steps can be taken:

 * Change the module name by appending "-state" to the original
 module name

 * Change the namespace by appending "-state" to the original
 namespace value

 * Change the prefix by appending "-s" to the original prefix value

 * Add an import to the original module (e.g., for typedef
 definitions)

 * Retain or create only the top-level nodes that have a "config"
 statement value "false". These subtrees represent "config false"
 data nodes that were combined into the configuration subtree;
 therefore, they are not available to non-NMDA aware clients. Set
 the "status" statement to "deprecated" for each new node.

Boucadair & Wu Expires 7 January 2024 [Page 50]

Internet-Draft Guidelines for YANG Documents July 2023

 * The module description SHOULD clearly identify the module as a
 temporary non-NMDA module

4.23.3.2. Example: Create a New NMDA Module

 Create an NMDA-compliant module, using combined configuration and
 state subtrees, whenever possible.

 module example-foo {
 namespace "urn:example.com:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 // operational value in operational state datastore only
 // may contain "config false" nodes as needed
 }
 }

4.23.3.3. Example: Convert an Old Non-NMDA Module

 Do not remove non-compliant objects from existing modules. Instead,
 change the status to "deprecated". At some point, usually after 1
 year, the status MAY be changed to "obsolete".

 Old Module:

 module example-foo {
 namespace "urn:example.com:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 }

 container foo-state {
 config false;
 // operational state child nodes
 }
 }

 Converted NMDA Module:

Boucadair & Wu Expires 7 January 2024 [Page 51]

Internet-Draft Guidelines for YANG Documents July 2023

 module example-foo {
 namespace "urn:example.com:params:xml:ns:yang:example-foo";
 prefix "foo";

 container foo {
 // configuration data child nodes
 // operational value in operational state datastore only
 // may contain "config false" nodes as needed
 // will contain any data nodes from old foo-state
 }

 // keep original foo-state but change status to deprecated
 container foo-state {
 config false;
 status deprecated;
 // operational state child nodes
 }
 }

4.23.3.4. Example: Create a Temporary NMDA Module

 Create a new module that contains the top-level operational state
 data nodes that would have been available before they were combined
 with configuration data nodes (to be NMDA compliant).

 module example-foo-state {
 namespace "urn:example.com:params:xml:ns:yang:example-foo-state";
 prefix "foo-s";

 // import new or converted module; not used in this example
 import example-foo { prefix foo; }

 container foo-state {
 config false;
 status deprecated;
 // operational state child nodes
 }
 }

4.24. Performance Considerations

 It is generally likely that certain YANG statements require more
 runtime resources than other statements. Although there are no
 performance requirements for YANG validation, the following
 information MAY be considered when designing YANG data models:

 * Lists are generally more expensive than containers

Boucadair & Wu Expires 7 January 2024 [Page 52]

Internet-Draft Guidelines for YANG Documents July 2023

 * "when" statement evaluation is generally more expensive than "if-
 feature" or "choice" statements

 * "must" statements are generally more expensive than "min-entries",
 "max-entries", "mandatory", or "unique" statements

 * "identityref" leafs are generally more expensive than
 "enumeration" leafs

 * "leafref" and "instance-identifier" types with "require-instance"
 set to true are generally more expensive than if "require-
 instance" is set to false

4.25. Open Systems Considerations

 Only the modules imported by a particular module can be assumed to be
 present in an implementation. An open system MAY include any
 combination of YANG modules.

4.26. Guidelines for Constructs Specific to YANG 1.1

 The set of guidelines for YANG 1.1 will grow as operational
 experience is gained with the new language features. This section
 contains an initial set of guidelines for new YANG 1.1 language
 features.

4.26.1. Importing Multiple Revisions

 Standard modules SHOULD NOT import multiple revisions of the same
 module into a module. This MAY be done if independent definitions
 (e.g., enumeration typedefs) from specific revisions are needed in
 the importing module.

4.26.2. Using Feature Logic

 The YANG 1.1 feature logic is much more expressive than YANG 1.0. A
 "description" statement SHOULD describe the "if-feature" logic in
 text, to help readers understand the module.

 YANG features SHOULD be used instead of the "when" statement, if
 possible. Features are advertised by the server, and objects
 conditional by the "if-feature" statement are conceptually grouped
 together. There is no such commonality supported for "when"
 statements.

Boucadair & Wu Expires 7 January 2024 [Page 53]

Internet-Draft Guidelines for YANG Documents July 2023

 Features generally require less server implementation complexity and
 runtime resources than objects that use "when" statements. Features
 are generally static (i.e., set when a module is loaded and not
 changed at runtime). However, every client edit might cause a "when"
 statement result to change.

4.26.3. "anyxml" versus "anydata"

 The "anyxml" statement MUST NOT be used to represent a conceptual
 subtree of YANG data nodes. The "anydata" statement MUST be used for
 this purpose.

4.26.4. "action" versus "rpc"

 The use of "action" statements or "rpc" statements is a subjective
 design decision. RPC operations are not associated with any
 particular data node. Actions are associated with a specific data
 node definition. An "action" statement SHOULD be used if the
 protocol operation is specific to a subset of all data nodes instead
 of all possible data nodes.

 The same action name MAY be used in different definitions within
 different data node. For example, a "reset" action defined with a
 data node definition for an interface might have different parameters
 than for a power supply or a VLAN. The same action name SHOULD be
 used to represent similar semantics.

 The NETCONF Access Control Model (NACM) [RFC8341] does not support
 parameter-based access control for RPC operations. The user is given
 permission (or not) to invoke the RPC operation with any parameters.
 For example, if each client is only allowed to reset their own
 interface, then NACM cannot be used.

 For example, NACM cannot enforce access control based on the value of
 the "interface" parameter, only the "reset" operation itself:

 rpc reset {
 input {
 leaf interface {
 type if:interface-ref;
 mandatory true;
 description "The interface to reset.";
 }
 }
 }

Boucadair & Wu Expires 7 January 2024 [Page 54]

Internet-Draft Guidelines for YANG Documents July 2023

 However, NACM can enforce access control for individual interface
 instances, using a "reset" action. If the user does not have read
 access to the specific "interface" instance, then it cannot invoke
 the "reset" action for that interface instance:

 container interfaces {
 list interface {
 ...
 action reset { }
 }
 }

4.27. Updating YANG Modules (Published versus Unpublished)

 YANG modules can change over time. Typically, new data model
 definitions are needed to support new features. YANG update rules
 defined in Section 11 of [RFC7950] MUST be followed for published
 modules. They MAY be followed for unpublished modules.

 The YANG update rules only apply to published module revisions. Each
 organization will have their own way to identify published work that
 is considered to be stable and unpublished work that is considered to
 be unstable. For example, in the IETF, the RFC document is used for
 published work, and the I-D is used for unpublished work.

5. IANA-Maintained Modules

5.1. Context

 IANA maintains a set of registries that are key for interoperability.
 The content of these registries are usually available using various
 formats (e.g., plain text, XML). However, there were some confusion
 in the past about whether the content of some registries is dependent
 on a specific representation format. For example, Section 5 of
 [RFC8892] was published to clarify that MIB and YANG modules are
 merely additional formats in which the "Interface Types (ifType)" and
 "Tunnel Types (tunnelType)" registries are available. The MIB
 [RFC2863] and YANG modules [RFC7224][RFC8675] are not separate
 registries, and the same values are always present in all formats of
 the same registry.

 Also, some YANG modules include parameters and values directly in a
 module that is not maintained by IANA while these are populated in an
 IANA registry. Such a design is suboptimal as it creates another
 source of information that may deviate from the IANA registry as new
 values are assigned or some values are deprecated.

Boucadair & Wu Expires 7 January 2024 [Page 55]

Internet-Draft Guidelines for YANG Documents July 2023

 For the sake of consistency, better flexibility to support new
 values, and maintaining IANA registries as the unique authoritative
 source of information, when such an information is maintained in a
 registry, this document encourages the use of IANA-maintained
 modules.

 The following section provides a set of guidelines for YANG module
 authors related to the design of IANA-maintained modules. These
 guidelines are meant to leverage existing IANA registries and use
 YANG as another format to present the content of these registries
 when appropriate.

5.2. Guidelines for IANA-Maintained Modules

 When designing a YANG module for a functionality governed by a
 protocol for which IANA maintains a registry, it is RECOMMENDED to
 specify an IANA-maintained module that echoes the content of that
 registry. This is superior to including that content in an IETF-
 maintained module.

 When one or multiple sub-registries are available under the same
 registry, it is RECOMMENDED to define an IANA-maintained module for
 each sub-registry. However, module designers MAY consider defining
 one single IANA-maintained module that covers all sub-registries if
 maintaining that single module is manageable (e.g., very few values
 are present or expected to be present for each sub-registry). An
 example of such a module is documented in Section 5.2 of [RFC9132].

 An IANA-maintained module may use identities (e.g., [RFC8675]) or
 enumerations (e.g., [RFC9108]). The decision about which type to use
 is left to the module designers and should be made based upon
 specifics related to the intended use of the IANA-maintained module.
 For example, identities are useful if the registry entries are
 organized hierarchically, possibly including multiple inheritances.
 It is RECOMMENDED that the reasoning for the design choice is
 documented in the companion specification that registers an IANA-
 maintained module. For example, [RFC9244] defines an IANA-maintained
 module that uses enumerations for the following reason:

 "The DOTS telemetry module (Section 10.1) uses "enumerations" rather
 than "identities" to define units, samples, and intervals because
 otherwise the namespace identifier "ietf-dots-telemetry" must be
 included when a telemetry attribute is included (e.g., in a
 mitigation efficacy update). The use of "identities" is thus
 suboptimal from a message compactness standpoint; one of the key
 requirements for DOTS messages."

Boucadair & Wu Expires 7 January 2024 [Page 56]

Internet-Draft Guidelines for YANG Documents July 2023

 Designers of IANA-maintained modules MAY supply the full initial
 version of the module in a specification document that registers the
 module or only a script to be used (including by IANA) for generating
 the module (e.g., an XSLT stylesheet as in Appendix A of [RFC9108]).
 For both cases, the document that defines an IANA-maintained module
 MUST include a note indicating that the document is only documenting
 the initial version of the module and that the authoritative version
 is to be retrieved from the IANA registry. It is RECOMMENDED to
 include the URL from where to retrieve the recent version of the
 module. When a script is used, the Internet-Draft that defines an
 IANA-maintained module SHOULD include an appendix with the initial
 full version of the module. Including such an appendix in pre-RFC
 versions is meant to assess the correctness of the outcome of the
 supplied script. The authors MUST include a note to the RFC Editor
 requesting that the appendix be removed before publication as RFC.
 Initial versions of IANA-maintained modules that are published in
 RFCs may be misused despite the appropriate language to refer to the
 IANA registry to retrieve the up-to-date module. This is problematic
 for interoperability, e.g., when values are deprecated or are
 associated with a new meaning.

 Note: [Style] provides XSLT 1.0 stylesheets and other tools for
 translating IANA registries to YANG modules. The tools can be
 used to generate up-to-date revisions of an IANA-maintained module
 based upon the XML representation of an IANA registry.

 If an IANA-maintained module is imported by another module, a
 normative reference with the IANA URL from where to retrieve the
 IANA-maintained module SHOULD be included. Although not encouraged,
 referencing the RFC that defines the initial version of the IANA
 module is acceptable in specific cases (e.g., the imported version is
 specifically the initial version, the RFC includes useful description
 about the usage of the module).

 Examples of IANA URLs from where to retrieve the latest version of an
 IANA-maintained module are: [IANA_BGP-L2_URL], [IANA_PW-Types_URL],
 and [IANA_BFD_URL]. [IANA_FOO_URL] is used in the following to refer
 to such URLs. These URLs are expected to be sufficiently permanent
 and stable.

Boucadair & Wu Expires 7 January 2024 [Page 57]

Internet-Draft Guidelines for YANG Documents July 2023

5.3. Guidance for Writing the IANA Considerations for RFCs Defining
 IANA-Maintained Modules

 In addition to the IANA considerations in Section 3.8, the IANA
 Considerations Section of an RFC that includes an IANA- maintained
 module MUST provide the required instructions for IANA to
 automatically perform the maintenance of that IANA module. These
 instructions describe how to proceed with updates to the IANA-
 maintained module that are triggered by a change to the authoritative
 registry. Concretely, the IANA Considerations Section SHALL at least
 provide the following information:

 * An IANA request to add a note to the page displaying the
 information about the IANA-maintained module that new values must
 not be directly added to the module, but to an authoritative IANA
 registry.

 * An IANA request to add a note to the authoritative IANA registry
 to indicate that any change to the registry must be reflected into
 the corresponding IANA-maintained module.

 * Details about the required actions (e.g., add a new "identity" or
 "enum" statement) to update the IANA-maintained module to reflect
 changes to an authoritative IANA registry. Typically, these
 details have to include the procedure to create a new "identity"
 statement name and sub-statements ("base", "status",
 "description", and "reference") or a new "enum" statement and sub-
 statements ("value", "status", "description", and "reference").

 * A note that unassigned or reserved values must not be present in
 the IANA-maintained module.

 * An indication whether experimental values are included in the
 IANA-maintained module. Absent such an indication, experimental
 values MUST NOT be listed in the IANA-maintained module.

 * An instruction about how to generate the "revision" statement.

 A template for the IANA Considerations is provided in Section 5.3.1
 for IANA-maintained modules with identities and Section 5.3.2 for
 IANA- maintained modules with enumerations. Authors may modify the
 template to reflect specifics of their modules (e.g., Multiple
 registries can be listed for a single IANA-maintained module, no
 explicit description (or name) field is listed under the
 authoritative IANA registry).

 The following templates are to be considered in addition to the
 required information that is provided in Section 3.8.

Boucadair & Wu Expires 7 January 2024 [Page 58]

Internet-Draft Guidelines for YANG Documents July 2023

5.3.1. Template for IANA-Maintained Modules with Identities

 <CODE BEGINS>
 This document defines the initial version of the IANA-maintained
 "iana-foo" YANG module. The most recent version of the YANG module
 is available from the "YANG Parameters" registry
 [IANA-YANG-PARAMETERS].

 IANA is requested to add this note to the registry:

 New values must not be directly added to the "iana-foo" YANG
 module. They must instead be added to the "foo" registry.

 When a value is added to the "foo" registry, a new "identity"
 statement must be added to the "iana-foo" YANG module. The name of
 the "identity" is the lower-case of the name provided in the
 registry. The "identity" statement should have the following sub-
 statements defined:

 "base": Contains ’name-base-identity-defined-in-foo’.

 "status": Include only if a registration has been deprecated or
 obsoleted. IANA "deprecated" maps to YANG status
 "deprecated", and IANA "obsolete" maps to YANG status
 "obsolete".

 "description": Replicates the description from the registry.

 "reference": Replicates the reference(s) from the registry with the
 title of the document(s) added.

 Unassigned or reserved values are not present in the module.

 When the "iana-foo" YANG module is updated, a new "revision"
 statement with a unique revision date must be added in front of the
 existing revision statements.

 IANA is requested to add this note to [reference-to-the-iana-foo-
 registry]:

 When this registry is modified, the YANG module "iana-foo"
 [IANA_FOO_URL] must be updated as defined in RFCXXXX.
 <CODE ENDS>

5.3.2. Template for IANA-Maintained Modules with Enumerations

Boucadair & Wu Expires 7 January 2024 [Page 59]

Internet-Draft Guidelines for YANG Documents July 2023

 <CODE BEGINS>
 This document defines the initial version of the IANA-maintained
 "iana-foo" YANG module. The most recent version of the YANG module
 is available from the "YANG Parameters" registry
 [IANA-YANG-PARAMETERS].

 IANA is requested to add this note to the registry:

 New values must not be directly added to the "iana-foo" YANG
 module. They must instead be added to the "foo" registry.

 When a value is added to the "foo" registry, a new "enum" statement
 must be added to the "iana-foo" YANG module. The "enum" statement,
 and sub-statements thereof, should be defined:

 "enum": Replicates a name from the registry.

 "value": Contains the decimal value of the IANA-assigned value.

 "status": Is included only if a registration has been deprecated
 or obsoleted. IANA "deprecated" maps to YANG status
 "deprecated", and IANA "obsolete" maps to YANG status
 "obsolete".

 "description": Replicates the description from the registry.

 "reference": Replicates the reference(s) from the registry with the
 title of the document(s) added.

 Unassigned or reserved values are not present in the module.

 When the "iana-foo" YANG module is updated, a new "revision"
 statement with a unique revision date must be added in front of the
 existing revision statements.

 IANA is requested to add this note to [reference-to-the-iana-foo-
 registry]:

 When this registry is modified, the YANG module "iana-foo"
 [IANA_FOO_URL] must be updated as defined in RFCXXXX.
 <CODE ENDS>

6. IANA Considerations

 The following registration in the "ns" subregistry of the "IETF XML
 Registry" [RFC3688] was detailed in [RFC6087]. This document
 requests IANA to update this registration to reference this document.

Boucadair & Wu Expires 7 January 2024 [Page 60]

Internet-Draft Guidelines for YANG Documents July 2023

 URI: urn:ietf:params:xml:ns:yang:ietf-template
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following assignment was detailed in [RFC6087] and has been
 updated by IANA in the "YANG Module Names" registry to reference
 [RFC8407]. This document requests IANA to update the reference for
 the "YANG Module Names" registry to point to the RFC number that will
 be assigned to this document as it contains the template necessary
 for registration in Appendix B.

 +=====================+===+
 | Field | Value |
 +=====================+===+
 | Name | ietf-template |
 +---------------------+---+
 | Namespace | urn:ietf:params:xml:ns:yang:ietf-template |
 +---------------------+---+
 | Prefix | temp |
 +---------------------+---+
 | Maintained by IANA? | N |
 +---------------------+---+
 | Reference | RFC XXXX |
 +---------------------+---+

 Table 2: YANG Registry Assignment

7. Security Considerations

 This document defines documentation guidelines for NETCONF or
 RESTCONF content defined with the YANG data modeling language;
 therefore, it does not introduce any new or increased security risks
 into the management system.

8. References

8.1. Normative References

 [ID-Guidelines]
 IETF, "Guidelines to Authors of Internet-Drafts", n.d.,
 <https://authors.ietf.org/en/content-guidelines-overview>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

Boucadair & Wu Expires 7 January 2024 [Page 61]

Internet-Draft Guidelines for YANG Documents July 2023

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC5378] Bradner, S., Ed. and J. Contreras, Ed., "Rights
 Contributors Provide to the IETF Trust", BCP 78, RFC 5378,
 DOI 10.17487/RFC5378, November 2008,
 <https://www.rfc-editor.org/rfc/rfc5378>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8040>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Boucadair & Wu Expires 7 January 2024 [Page 62]

Internet-Draft Guidelines for YANG Documents July 2023

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8342>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data
 Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
 June 2020, <https://www.rfc-editor.org/rfc/rfc8791>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/rfc/rfc8792>.

 [W3C.REC-xpath]
 Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", W3C Recommendation REC-xpath-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

8.2. Informative References

 [IANA-MOD-NAMES]
 IANA, "YANG Module Names",
 <https://www.iana.org/assignments/yang-parameters/>.

 [IANA-XML] IANA, "IETF XML Registry",
 <https://www.iana.org/assignments/xml-registry/>.

 [IANA-YANG-PARAMETERS]
 "YANG Parameters", n.d.,
 <https://www.iana.org/assignments/yang-parameters>.

 [IANA_BFD_URL]
 IANA, "iana-bfd-types YANG Module",
 <https://www.iana.org/assignments/iana-bfd-types/iana-bfd-
 types.xhtml>.

Boucadair & Wu Expires 7 January 2024 [Page 63]

Internet-Draft Guidelines for YANG Documents July 2023

 [IANA_BGP-L2_URL]
 IANA, "iana-bgp-l2-encaps YANG Module",
 <https://www.iana.org/assignments/iana-bgp-l2-encaps/iana-
 bgp-l2-encaps.xhtml>.

 [IANA_PW-Types_URL]
 IANA, "iana-pseudowire-types YANG Module",
 <https://www.iana.org/assignments/iana-pseudowire-types/
 iana-pseudowire-types.xhtml>.

 [RFC-STYLE]
 RFC Editor, "Style Guide",
 <http://www.rfc-editor.org/styleguide/>.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", BCP 9, RFC 2026, DOI 10.17487/RFC2026, October 1996,
 <https://www.rfc-editor.org/rfc/rfc2026>.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
 <https://www.rfc-editor.org/rfc/rfc2863>.

 [RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix
 Reserved for Documentation", RFC 3849,
 DOI 10.17487/RFC3849, July 2004,
 <https://www.rfc-editor.org/rfc/rfc3849>.

 [RFC4151] Kindberg, T. and S. Hawke, "The ’tag’ URI Scheme",
 RFC 4151, DOI 10.17487/RFC4151, October 2005,
 <https://www.rfc-editor.org/rfc/rfc4151>.

 [RFC4181] Heard, C., Ed., "Guidelines for Authors and Reviewers of
 MIB Documents", BCP 111, RFC 4181, DOI 10.17487/RFC4181,
 September 2005, <https://www.rfc-editor.org/rfc/rfc4181>.

 [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
 Reserved for Documentation", RFC 5737,
 DOI 10.17487/RFC5737, January 2010,
 <https://www.rfc-editor.org/rfc/rfc5737>.

 [RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG
 Data Model Documents", RFC 6087, DOI 10.17487/RFC6087,
 January 2011, <https://www.rfc-editor.org/rfc/rfc6087>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/rfc/rfc6991>.

Boucadair & Wu Expires 7 January 2024 [Page 64]

Internet-Draft Guidelines for YANG Documents July 2023

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7223>.

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7224>.

 [RFC7322] Flanagan, H. and S. Ginoza, "RFC Style Guide", RFC 7322,
 DOI 10.17487/RFC7322, September 2014,
 <https://www.rfc-editor.org/rfc/rfc7322>.

 [RFC7841] Halpern, J., Ed., Daigle, L., Ed., and O. Kolkman, Ed.,
 "RFC Streams, Headers, and Boilerplates", RFC 7841,
 DOI 10.17487/RFC7841, May 2016,
 <https://www.rfc-editor.org/rfc/rfc7841>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7951>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8340>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8343>.

 [RFC8349] Lhotka, L., Lindem, A., and Y. Qu, "A YANG Data Model for
 Routing Management (NMDA Version)", RFC 8349,
 DOI 10.17487/RFC8349, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8349>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/rfc/rfc8407>.

 [RFC8675] Boucadair, M., Farrer, I., and R. Asati, "A YANG Data
 Model for Tunnel Interface Types", RFC 8675,
 DOI 10.17487/RFC8675, November 2019,
 <https://www.rfc-editor.org/rfc/rfc8675>.

 [RFC8892] Thaler, D. and D. Romascanu, "Guidelines and Registration
 Procedures for Interface Types and Tunnel Types",
 RFC 8892, DOI 10.17487/RFC8892, August 2020,
 <https://www.rfc-editor.org/rfc/rfc8892>.

Boucadair & Wu Expires 7 January 2024 [Page 65]

Internet-Draft Guidelines for YANG Documents July 2023

 [RFC9108] Lhotka, L. and P. paek, "YANG Types for DNS Classes and
 Resource Record Types", RFC 9108, DOI 10.17487/RFC9108,
 September 2021, <https://www.rfc-editor.org/rfc/rfc9108>.

 [RFC9132] Boucadair, M., Ed., Shallow, J., and T. Reddy.K,
 "Distributed Denial-of-Service Open Threat Signaling
 (DOTS) Signal Channel Specification", RFC 9132,
 DOI 10.17487/RFC9132, September 2021,
 <https://www.rfc-editor.org/rfc/rfc9132>.

 [RFC9244] Boucadair, M., Ed., Reddy.K, T., Ed., Doron, E., Chen, M.,
 and J. Shallow, "Distributed Denial-of-Service Open Threat
 Signaling (DOTS) Telemetry", RFC 9244,
 DOI 10.17487/RFC9244, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9244>.

 [RFC9291] Boucadair, M., Ed., Gonzalez de Dios, O., Ed., Barguil,
 S., and L. Munoz, "A YANG Network Data Model for Layer 2
 VPNs", RFC 9291, DOI 10.17487/RFC9291, September 2022,
 <https://www.rfc-editor.org/rfc/rfc9291>.

 [Style] "IANA YANG", n.d., <https://github.com/llhotka/iana-yang>.

Appendix A. Module Review Checklist

 This section is adapted from [RFC4181].

 The purpose of a YANG module review is to review the YANG module for
 both technical correctness and adherence to IETF documentation
 requirements. The following checklist may be helpful when reviewing
 an I-D:

 * I-D Boilerplate -- verify that the document contains the required
 I-D boilerplate (see <https://www.ietf.org/id-info/
 guidelines.html>), including the appropriate statement to permit
 publication as an RFC, and that the I-D boilerplate does not
 contain references or section numbers.

 * Abstract -- verify that the abstract does not contain references,
 that it does not have a section number, and that its content
 follows the guidelines in <https://www.ietf.org/id-info/
 guidelines.html>.

 * Copyright Notice -- verify that the document has the appropriate
 text regarding the rights that document contributors provide to
 the IETF Trust [RFC5378]. Verify that it contains the full IETF
 Trust copyright notice at the beginning of the document. The IETF
 Trust Legal Provisions (TLP) can be found at:

Boucadair & Wu Expires 7 January 2024 [Page 66]

Internet-Draft Guidelines for YANG Documents July 2023

 <https://trustee.ietf.org/license-info/>

 * Security Considerations section -- verify that the document uses
 the latest approved template from the Operations and Management
 (OPS) area website (see <https://trac.ietf.org/area/ops/trac/wiki/
 yang-security-guidelines>) and that the guidelines therein have
 been followed.

 * IANA Considerations section -- this section must always be
 present. For each module within the document, ensure that the
 IANA Considerations section contains entries for the following
 IANA registries:

 XML Namespace Registry: Register the YANG module namespace.

 YANG Module Registry: Register the YANG module name, prefix,
 namespace, and RFC number, according to the rules specified in
 [RFC6020].

 * References -- verify that the references are properly divided
 between normative and informative references, that RFCs 2119 and
 8174 are included as normative references if the terminology
 defined therein is used in the document, that all references
 required by the boilerplate are present, that all YANG modules
 containing imported items are cited as normative references, and
 that all citations point to the most current RFCs, unless there is
 a valid reason to do otherwise (for example, it is okay to include
 an informative reference to a previous version of a specification
 to help explain a feature included for backward compatibility).
 Be sure citations for all imported modules are present somewhere
 in the document text (outside the YANG module). If a YANG module
 contains reference or "description" statements that refer to an
 I-D, then the I-D is included as an informative reference.

 * License -- verify that the document contains the Revised BSD
 License in each YANG module or submodule. Some guidelines related
 to this requirement are described in Section 3.1. Make sure that
 the correct year is used in all copyright dates. Use the approved
 text from the latest TLP document, which can be found at:

 <https://trustee.ietf.org/license-info/>

 * Other Issues -- check for any issues mentioned in
 <https://www.ietf.org/id-info/checklist.html> that are not covered
 elsewhere.

Boucadair & Wu Expires 7 January 2024 [Page 67]

Internet-Draft Guidelines for YANG Documents July 2023

 * Technical Content -- review the actual technical content for
 compliance with the guidelines in this document. The use of a
 YANG module compiler is recommended when checking for syntax
 errors. A list of freely available tools and other information,
 including formatting advice, can be found at:

 <https://trac.ietf.org/trac/netconf/wiki>

 and

 <https://trac.ietf.org/trac/netmod/wiki>

 Checking for correct syntax, however, is only part of the job. It
 is just as important to actually read the YANG module document
 from the point of view of a potential implementor. It is
 particularly important to check that "description" statements are
 sufficiently clear and unambiguous to allow interoperable
 implementations to be created.

Appendix B. YANG Module Template

 <CODE BEGINS> file "ietf-template@2016-03-20.yang"
 module ietf-template {
 yang-version 1.1;

 // replace this string with a unique namespace URN value

 namespace "urn:ietf:params:xml:ns:yang:ietf-template";

 // replace this string, and try to pick a unique prefix

 prefix temp;

 // import statements here: e.g.,
 // import ietf-yang-types { prefix yang; }
 // import ietf-inet-types { prefix inet; }
 // identify the IETF working group if applicable

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 // update this contact statement with your info

 contact
 "WG Web: <http://datatracker.ietf.org/wg/your-wg-name/>
 WG List: <mailto:your-wg-name@ietf.org>

 Editor: your-name

Boucadair & Wu Expires 7 January 2024 [Page 68]

Internet-Draft Guidelines for YANG Documents July 2023

 <mailto:your-email@example.com>";

 // replace the first sentence in this description statement.
 // replace the copyright notice with the most recent
 // version, if it has been updated since the publication
 // of this document

 description
 "This module defines a template for other YANG modules.

 Copyright (c) <insert year> IETF Trust and the persons
 identified as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove
 // this note

 // replace ’2016-03-20’ with the module publication date
 // the format is (year-month-day)

 revision 2016-03-20 {
 description
 "what changed in this revision";
 reference "RFC XXXX: <Replace With Document Title>";
 }

 // extension statements
 // feature statements
 // identity statements
 // typedef statements
 // grouping statements
 // data definition statements
 // augment statements
 // rpc statements
 // notification statements
 // DO NOT put deviation statements in a published module
 }
 <CODE ENDS>

Boucadair & Wu Expires 7 January 2024 [Page 69]

Internet-Draft Guidelines for YANG Documents July 2023

Acknowledgments

 Thanks to Jürgen Schönwälder, Ladislav Lhotka, and Qin Wu for the
 discussion and valuable comments. Special thanks to Ladislav Lhotka
 for sharing more context that led to the design documented in
 [RFC9108].

 Thanks to Andy Bierman, Italo Busi, Benoit Claise, Tom Petch, and
 Randy Presuhn for the comments. Lou Berger suggested to include more
 details about IANA considerations.

 The author of RFC 8407: Andy Bierman

 YumaWorks

 email: andy@yumaworks.com

 Acknowledgments from RFC 8407: The structure and contents of this
 document are adapted from "Guidelines for Authors and Reviewers of
 MIB Documents" [RFC4181], by C. M. Heard.

 The working group thanks Martin Bjorklund, Juergen Schoenwaelder,
 Ladislav Lhotka, Jernej Tuljak, Lou Berger, Robert Wilton, Kent
 Watsen, and William Lupton for their extensive reviews and
 contributions to this document.

Authors’ Addresses

 Mohamed Boucadair
 Orange
 France
 Email: mohamed.boucadair@orange.com

 Qin Wu
 Huawei
 China
 Email: bill.wu@huawei.com

Boucadair & Wu Expires 7 January 2024 [Page 70]

netmod O. G. D. Dios
Internet-Draft S. Barguil
Intended status: Standards Track Telefonica
Expires: 29 December 2023 M. Boucadair
 Orange
 Q. Wu
 Huawei
 27 June 2023

 Extensions to the Access Control Lists (ACLs) YANG Model
 draft-ietf-netmod-acl-extensions-02

Abstract

 RFC 8519 defines a YANG data model for Access Control Lists (ACLs).
 This document discusses a set of extensions that fix many of the
 limitations of the ACL model as initially defined in RFC 8519.

 The document also defines an IANA-maintained module for ICMP types.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Network Modeling
 Working Group mailing list (netmod@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/netmod/.

 Source for this draft and an issue tracker can be found at
 https://github.com/boucadair/enhanced-acl-netmod.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 29 December 2023.

Dios, et al. Expires 29 December 2023 [Page 1]

Internet-Draft Enhanced ACLs June 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Problem Statement & Gap Analysis 4
 3.1. Suboptimal Configuration: Lack of Support for Lists of
 Prefixes . 4
 3.2. Manageability: Impossibility to Use Aliases or Defined
 Sets . 8
 3.3. Bind ACLs to Devices, Not Only Interfaces 9
 3.4. Partial or Lack of IPv4/IPv6 Fragment Handling 9
 3.5. Suboptimal TCP Flags Handling 9
 3.6. Rate-Limit Action . 10
 3.7. Payload-based Filtering 10
 3.8. Reuse the ACLs Content Across Several Devices 10
 3.9. Match MPLS Headers 11
 4. Overall Module Structure 11
 4.1. Enhanced ACL . 11
 4.2. Defined sets . 13
 4.3. TCP Flags Handling 14
 4.4. Fragments Handling 15
 4.5. Rate-Limit Traffic 19
 4.6. ISID Filter . 19
 4.7. VLAN Filter . 20
 4.8. Match MPLS Headers 21
 5. YANG Modules . 22
 5.1. Enhanced ACL . 22
 6. Security Considerations 42
 7. IANA Considerations . 42
 7.1. URI Registration . 42
 7.2. YANG Module Name Registration 43
 8. References . 43
 8.1. Normative References 43
 8.2. Informative References 45

Dios, et al. Expires 29 December 2023 [Page 2]

Internet-Draft Enhanced ACLs June 2023

 Appendix A. XLTS Template to Generate The ICMP Type
 IANA-Maintained Module 45
 Appendix B. Initial Version of the The ICMP Type IANA-Maintained
 Module . 47
 Appendix C. Acknowledgements 54
 Authors’ Addresses . 54

1. Introduction

 [RFC8519] defines Access Control Lists (ACLs) as a user-ordered set
 of filtering rules. The model targets the configuration of the
 filtering behavior of a device. However, the model structure, as
 defined in [RFC8519], suffers from a set of limitations. This
 document describes these limitations and proposes an enhanced ACL
 structure. The YANG module in this document is solely based on
 augmentations to the ACL YANG module defined in [RFC8519].

 The motivation of such enhanced ACL structure is discussed in detail
 in Section 3.

 When managing ACLs, it is common for network operators to group match
 elements in pre-defined sets. The consolidation into group matches
 allows for reducing the number of rules, especially in large scale
 networks. If, for example, it is needed to find a match against 100
 IP addresses (or prefixes), a single rule will suffice rather than
 creating individual Access Control Entries (ACEs) for each IP address
 (or prefix). In doing so, implementations would optimize the
 performance of matching lists vs multiple rules matching.

 The enhanced ACL structure is also meant to facilitate the management
 of network operators. Instead of entering the IP address or port
 number literals, using user-named lists decouples the creation of the
 rule from the management of the sets. Hence, it is possible to
 remove/add entries to the list without redefining the (parent) ACL
 rule.

 In addition, the notion of Access Control List (ACL) and defined sets
 is generalized so that it is not device-specific as per [RFC8519].
 ACLs and defined sets may be defined at network / administrative
 domain level and associated to devices. This approach facilitates
 the reusability across multiple network elements. For example,
 managing the IP prefix sets from a network level makes it easier to
 maintain by the security groups.

 Network operators maintain sets of IP prefixes that are related to
 each other, e.g., deny-lists or accept-lists that are associated with
 those provided by a VPN customer. These lists are maintained and
 manipulated by security expert teams.

Dios, et al. Expires 29 December 2023 [Page 3]

Internet-Draft Enhanced ACLs June 2023

 Note that ACLs are used locally in devices but are triggered by other
 tools such as DDoS mitigation [RFC9132] or BGP Flow Spec [RFC8955]
 [RFC8956]. Therefore, supporting means to easily map to the
 filtering rules conveyed in messages triggered by these tools is
 valuable from a network operation standpoint.

 The document also defines an IANA-maintained module for ICMP types.
 The design of the module adheres with the recommendations in
 [I-D.boucadair-netmod-iana-registries]. A template to generate the
 module is available at Appendix A. Readers should refer to the IANA
 website [REF_TBC] to retrieve the latest version of the module. The
 module is provided in Appendix B for the users convenience, but that
 appendix will be removed from the final RFC.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The terminology for describing YANG modules is defined in [RFC7950].
 The meaning of the symbols in the tree diagrams is defined in
 [RFC8340].

 In addition to the terms defined in [RFC8519], this document makes
 use of the following term:

 Defined set: :Refers to reusable description of one or multiple
 information elements (e.g., IP address, IP prefix, port number, or
 ICMP type).

3. Problem Statement & Gap Analysis

3.1. Suboptimal Configuration: Lack of Support for Lists of Prefixes

 IP prefix-related data nodes, e.g., "destination-ipv4-network" or
 "destination-ipv6-network", do not support handling a list of IP
 prefixes, which may then lead to having to support large numbers of
 ACL entries in a configuration file.

 The same issue is encountered when ACLs have to be in place to
 mitigate DDoS attacks that involve a set of sources (e.g.,
 [RFC9132]). The situation is even worse when both a list of sources
 and destination prefixes are involved in the filtering.

Dios, et al. Expires 29 December 2023 [Page 4]

Internet-Draft Enhanced ACLs June 2023

 Figure 1 shows an example of the required ACL configuration for
 filtering traffic from two prefixes.

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "first-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:1::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 },
 {
 "name": "second-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {

Dios, et al. Expires 29 December 2023 [Page 5]

Internet-Draft Enhanced ACLs June 2023

 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:c::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 1: Example Illustrating Sub-optimal Use of the ACL Model
 with a Prefix List (Message Body)

 Such a configuration is suboptimal for both:

 * Network controllers that need to manipulate large files. All or a
 subset for this configuration will need to be passed to the
 underlying network devices.

 * Devices may receive such a configuration and thus will need to
 maintain it locally.

 Figure 2 depicts an example of an optimized structure:

Dios, et al. Expires 29 December 2023 [Page 6]

Internet-Draft Enhanced ACLs June 2023

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "prefix-list-support",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": [
 "2001:db8:6401:1::/64",
 "2001:db8:6401:c::/64"
],
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 2: Example Illustrating Optimal Use of the ACL Model in a
 Network Context (Message Body)

Dios, et al. Expires 29 December 2023 [Page 7]

Internet-Draft Enhanced ACLs June 2023

3.2. Manageability: Impossibility to Use Aliases or Defined Sets

 The same approach as the one discussed for IP prefixes can be
 generalized by introducing the concept of "aliases" or "defined
 sets".

 The defined sets are reusable definitions across several ACLs. Each
 category is modelled in YANG as a list of parameters related to the
 class it represents. The following sets can be considered:

 * Prefix sets: Used to create lists of IPv4 or IPv6 prefixes.

 * Protocol sets: Used to create a list of protocols.

 * Port number sets: Used to create lists of TCP or UDP port values
 (or any other transport protocol that makes uses of port numbers).
 The identity of the protocols is identified by the protocol set,
 if present. Otherwise, a set applies to any protocol.

 * ICMP sets: Uses to create lists of ICMP-based filters. This
 applies only when the protocol is set to ICMP or ICMPv6.

 A candidate structure is shown in Figure 3:

 +--rw defined-sets
 | +--rw prefix-sets
 | | +--rw prefix-set* [name]
 | | +--rw name string
 | | +--rw ip-prefix* inet:ip-prefix
 | +--rw port-sets
 | | +--rw port-set* [name]
 | | +--rw name string
 | | +--rw port* inet:port-number
 | +--rw protocol-sets
 | | +--rw protocol-set* [name]
 | | +--rw name string
 | | +--rw protocol-name* identityref
 | +--rw icmp-type-sets
 | +--rw icmp-type-set* [name]
 | +--rw name string
 | +--rw types* [type]
 | +--rw type uint8
 | +--rw code? uint8
 | +--rw rest-of-header? binary

 Figure 3: Examples of Defined Sets

Dios, et al. Expires 29 December 2023 [Page 8]

Internet-Draft Enhanced ACLs June 2023

 Aliases may also be considered to manage resources that are
 identified by a combination of various parameters as shown in the
 candidate tree in Figure 4. Note that some aliases can be provided
 by decomposing them into separate sets.

 | +--rw aliases
 | | +--rw alias* [name]
 | | +--rw name string
 | | +--rw prefix* inet:ip-prefix
 | | +--rw port-range* [lower-port]
 | | | +--rw lower-port inet:port-number
 | | | +--rw upper-port? inet:port-number
 | | +--rw protocol* uint8
 | | +--rw fqdn* inet:domain-name
 | | +--rw uri* inet:uri

 Figure 4: Examples of Aliases

3.3. Bind ACLs to Devices, Not Only Interfaces

 In the context of network management, an ACL may be enforced in many
 network locations. As such, the ACL module should allow for binding
 an ACL to multiple devices, not only (abstract) interfaces.

 The ACL name must, thus, be unique at the scale of the network, but
 the same name may be used in many devices when enforcing node-
 specific ACLs.

3.4. Partial or Lack of IPv4/IPv6 Fragment Handling

 [RFC8519] does not support fragment handling for IPv6 but offers a
 partial support for IPv4 through the use of ’flags’. Nevertheless,
 the use of ’flags’ is problematic since it does not allow a bitmask
 to be defined. For example, setting other bits not covered by the
 ’flags’ filtering clause in a packet will allow that packet to get
 through (because it won’t match the ACE).

 Defining a new IPv4/IPv6 matching field called ’fragment’ is thus
 required to efficiently handle fragment-related filtering rules.

3.5. Suboptimal TCP Flags Handling

 [RFC8519] supports including flags in the TCP match fields, however
 that structure does not support matching operations as those
 supported in BGP Flow Spec. Defining this field to be defined as a
 flag bitmask together with a set of operations is meant to
 efficiently handle TCP flags filtering rules.

Dios, et al. Expires 29 December 2023 [Page 9]

Internet-Draft Enhanced ACLs June 2023

3.6. Rate-Limit Action

 [RFC8519] specifies that forwarding actions can be ’accept’ (i.e.,
 accept matching traffic), ’drop’ (i.e., drop matching traffic without
 sending any ICMP error message), or ’reject’ (i.e., drop matching
 traffic and send an ICMP error message to the source). However,
 there are situations where the matching traffic can be accepted, but
 with a rate-limit policy. This capability is not supported by
 [RFC8519].

3.7. Payload-based Filtering

 Some transport protocols use existing protocols (e.g., TCP or UDP) as
 substrate. The match criteria for such protocols may rely upon the
 ’protocol’ under ’l3’, TCP/UDP match criteria, part of the TCP/UDP
 payload, or a combination thereof. [RFC8519] does not support
 matching based on the payload.

 Likewise, the current version of the ACL model does not support
 filtering of encapsulated traffic.

3.8. Reuse the ACLs Content Across Several Devices

 Having a global network view of the ACLs is highly valuable for
 service providers. An ACL could be defined and applied based on the
 network topology hierarchy. So, an ACL can be defined at the network
 level and, then, that same ACL can be used (or referenced to) in
 several devices (including termination points) within the same
 network.

 This network/device ACLs differentiation introduces several new
 requirements, e.g.:

 * An ACL name can be used at both network and device levels.

 * An ACL content updated at the network level should imply a
 transaction that updates the relevant content in all the nodes
 using this ACL.

 * ACLs defined at the device level have a local meaning for the
 specific node.

 * A device can be associated with a router, a VRF, a logical system,
 or a virtual node. ACLs can be applied in physical and logical
 infrastructure.

Dios, et al. Expires 29 December 2023 [Page 10]

Internet-Draft Enhanced ACLs June 2023

3.9. Match MPLS Headers

 The ACLs could be used to create rules to match MPLS fields on a
 packet.

4. Overall Module Structure

4.1. Enhanced ACL

 Figure 5 shows the full enhanced ACL tree:

 module: ietf-acl-enh
 +--rw defined-sets
 | +--rw ipv4-prefix-sets
 | | +--rw prefix-set* [name]
 | | +--rw name string
 | | +--rw description? string
 | | +--rw prefix* inet:ipv4-prefix
 | +--rw ipv6-prefix-sets
 | | +--rw prefix-set* [name]
 | | +--rw name string
 | | +--rw description? string
 | | +--rw prefix* inet:ipv6-prefix
 | +--rw port-sets
 | | +--rw port-set* [name]
 | | +--rw name string
 | | +--rw port* [id]
 | | +--rw id string
 | | +--rw (port)?
 | | +--:(port-range-or-operator)
 | | +--rw port-range-or-operator
 | | +--rw (port-range-or-operator)?
 | | +--:(range)
 | | | +--rw lower-port inet:port-number
 | | | +--rw upper-port inet:port-number
 | | +--:(operator)
 | | +--rw operator? operator
 | | +--rw port inet:port-number
 | +--rw protocol-sets
 | | +--rw protocol-set* [name]
 | | +--rw name string
 | | +--rw protocol* union
 | +--rw icmp-type-sets
 | +--rw icmp-type-set* [name]
 | +--rw name string
 | +--rw types* [type]
 | +--rw type uint8
 | +--rw code? uint8

Dios, et al. Expires 29 December 2023 [Page 11]

Internet-Draft Enhanced ACLs June 2023

 | +--rw rest-of-header? binary
 +--rw aliases
 +--rw alias* [name]
 +--rw name string
 +--rw prefix* inet:ip-prefix
 +--rw port-range* [lower-port]
 | +--rw lower-port inet:port-number
 | +--rw upper-port? inet:port-number
 +--rw protocol* uint8
 +--rw fqdn* inet:domain-name
 +--rw uri* inet:uri

 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
 +--rw (payload)?
 | +--:(prefix-pattern)
 | +--rw prefix-pattern {match-on-payload}?
 | +--rw offset? identityref
 | +--rw offset-end? uint64
 | +--rw operator? operator
 | +--rw prefix? binary
 +--rw (alias)?
 | +--rw alias-name* alias-ref
 +--rw (mpls)?
 +--:(mpls-values)
 +--rw mpls-values {match-on-mpls}?
 +--rw traffic-class? uint8
 +--rw label-position identityref
 +--rw upper-label-range? uint32
 +--rw lower-label-range? uint32
 +--rw label-block-name string
 +--rw ttl-value? uint8
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l2:
 +--rw vlan-filter {match-on-vlan-filter}?
 +--rw frame-type? string
 +--rw (vlan-type)?
 +--:(range)
 | +--rw lower-vlan uint16
 | +--rw upper-vlan uint16
 +--:(operator)
 +--rw operator? packet-fields:operator
 +--rw vlan* uint16
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l2:
 +--rw isid-filter {match-on-isid-filter}?
 +--rw (isid-type)?
 +--:(range)
 | +--rw lower-isid uint16
 | +--rw upper-isid uint16
 +--:(operator)

Dios, et al. Expires 29 December 2023 [Page 12]

Internet-Draft Enhanced ACLs June 2023

 +--rw operator? packet-fields:operator
 +--rw isid* uint16
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l3
 /acl:ipv4:
 +--rw ipv4-fragment
 | +--rw operator? operator
 | +--rw type? fragment-type
 +--rw source-ipv4-prefix-list? ipv4-prefix-set-ref
 +--rw destination-ipv4-prefix-list? ipv4-prefix-set-ref
 +--rw next-header-set? protocol-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l3
 /acl:ipv6:
 +--rw ipv6-fragment
 | +--rw operator? operator
 | +--rw type? fragment-type
 +--rw source-ipv6-prefix-list? ipv6-prefix-set-ref
 +--rw destination-ipv6-prefix-list? ipv6-prefix-set-ref
 +--rw protocol-set? protocol-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l4
 /acl:tcp:
 +--rw flags-bitmask
 | +--rw (mode)?
 | +--:(explicit)
 | | +--rw operator? operator
 | | +--rw explicit-tcp-flag* identityref
 | +--:(builtin)
 | +--rw bitmask? uint16
 +--rw source-tcp-port-set? port-set-ref
 +--rw destination-tcp-port-set? port-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l4
 /acl:udp:
 +--rw source-udp-port-set? port-set-ref
 +--rw destination-udp-port-set? port-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:l4
 /acl:icmp:
 +--rw icmp-set? icmp-type-set-ref
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:actions:
 +--rw rate-limit? decimal64

 Figure 5: Enhanced ACL tree

4.2. Defined sets

 The augmented ACL structure includes several containers to manage
 reusable sets of elements that can be matched in an ACL entry. Each
 set is uniquely identified by a name, and can be called from the
 relevant entry. The following sets are defined:

Dios, et al. Expires 29 December 2023 [Page 13]

Internet-Draft Enhanced ACLs June 2023

 * IPv4 prefix set: It contains a list of IPv4 prefixes. A match
 will be considered if the IP address (source or destination,
 depending on the ACL entry) is contained in any of the prefixes.

 * IPv6 prefix set: It contains a list of IPv6 prefixes. A match
 will be considered if the IP address (source or destination,
 depending on the ACL entry) is contained in any of the prefixes.

 * Port sets: It contains a list of port numbers to be used in TCP /
 UDP entries. The ports can be individual port numbers, a range of
 ports, and an operation.

 * Protocol sets: It contains a list of protocol values. Each
 protocol can be identified either by a number (e.g., 17) or a name
 (e.g., UDP).

 * ICMP sets: It contains a list of ICMP types, each of them
 identified by a type value, optionally the code and the rest of
 the header.

4.3. TCP Flags Handling

 The augmented ACL structure includes a new leaf ’flags-bitmask’ to
 better handle flags.

 Clients that support both ’flags-bitmask’ and ’flags’ matching fields
 MUST NOT set these fields in the same request.

 Figure 6 shows an example of a request to install a filter to discard
 incoming TCP messages having all flags unset.

Dios, et al. Expires 29 December 2023 [Page 14]

Internet-Draft Enhanced ACLs June 2023

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "aces": {
 "ace": [{
 "name": "null-attack",
 "matches": {
 "tcp": {
 "acl-enh:flags-bitmask": {
 "operator": "not any",
 "bitmask": 4095
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }]
 }
 }]
 }
 }

 Figure 6: Example to Deny TCP Null Attack Messages (Request Body)

4.4. Fragments Handling

 The augmented ACL structure includes a new leaf ’fragment’ to better
 handle fragments.

 Clients that support both ’fragment’ and ’flags’ matching fields MUST
 NOT set these fields in the same request.

 Figure 7 shows the content of a POST request to allow the traffic
 destined to 198.51.100.0/24 and UDP port number 53, but to drop all
 fragmented packets. The following ACEs are defined (in this order):

 * "drop-all-fragments" ACE: discards all fragments.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 198.51.100.0/24.

Dios, et al. Expires 29 December 2023 [Page 15]

Internet-Draft Enhanced ACLs June 2023

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv4": {
 "acl-enh:ipv4-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
 }
]
 }
 }
]
 }
 }

 Figure 7: Example Illustrating Candidate Filtering of IPv4
 Fragmented Packets (Message Body)

Dios, et al. Expires 29 December 2023 [Page 16]

Internet-Draft Enhanced ACLs June 2023

 Figure 8 shows an example of the body of a POST request to allow the
 traffic destined to 2001:db8::/32 and UDP port number 53, but to drop
 all fragmented packets. The following ACEs are defined (in this
 order):

 * "drop-all-fragments" ACE: discards all fragments (including atomic
 fragments). That is, IPv6 packets that include a Fragment header
 (44) are dropped.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 2001:db8::/32.

Dios, et al. Expires 29 December 2023 [Page 17]

Internet-Draft Enhanced ACLs June 2023

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv6": {
 "acl-enh:ipv6-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8::/32"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 8: Example Illustrating Candidate Filtering of IPv6
 Fragmented Packets (Message Body)

Dios, et al. Expires 29 December 2023 [Page 18]

Internet-Draft Enhanced ACLs June 2023

4.5. Rate-Limit Traffic

 In order to support rate-limiting (see Section 3.6), a new action
 called "rate-limit" is defined. Figure 9 shows an ACL example to
 rate-limit incoming SYNs during a SYN flood attack.

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example-with-rate-limit",
 "aces": {
 "ace": [{
 "name": "rate-limit-syn",
 "matches": {
 "tcp": {
 "acl-enh:flags-bitmask": {
 "operator": "match",
 "bitmask": 2
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "acl-enh:rate-limit": "20.00"
 }
 }]
 }
 }]
 }
 }

 Figure 9: Example Rate-Limit Incoming TCP SYNs (Message Body).

4.6. ISID Filter

 Provider backbone bridging (PBB) was originally defined as Virtual
 Bridged Local Area Networks [IEEE802.1ah] standard. However, instead
 of multiplexing VLANs, PBB duplicates the MAC layer of the customer
 frame and separates it from the provider domain, by encapsulating it
 in a 24 bit instance service identifier (I-SID). This provides for
 more transparency between the customer network and the provider
 network.

 The I-component forms the customer or access facing interface or
 routing instance. The I-component is responsible for mapping
 customer Ethernet traffic to the appropriate I-SID. In the network
 is mandatory to configure the default service identifier.

Dios, et al. Expires 29 December 2023 [Page 19]

Internet-Draft Enhanced ACLs June 2023

 Being able to filter by I-component Service identifier is a feature
 of the EVNP-PBB configuration.

 Figure 10 shows an ACL example to illustrate the ISID range
 filtering.

 {
 "ietf-acces-control-list:acls": {
 "acl": [
 {
 "name": "test",
 "aces": {
 "ace": [
 {
 "name": "1",
 "matches": {
 "ietf-acl-enh:isid-filter": {
 "lower-isid": 100,
 "upper-isid": 200
 }
 },
 "actions": {
 "forwarding": "ietf-acces-control-list:accept"
 }
 }
]
 }
 }
]
 }
 }
 }
 }

 Figure 10: Example ISID Filter (Message Body)

4.7. VLAN Filter

 Being able to filter all packets that are bridged within a VLAN or
 that are routed into or out of a bridge domain is part of the VPN
 control requirements derived of the EVPN definition done in
 [RFC7209]. So, all packets that are bridged within a VLAN or that
 are routed into or out of a VLAN can be captured, forwarded,
 translated or discarded based on the network policy applied.

 Figure 11 shows an ACL example to illustrate how to apply a VLAN
 range filter.

Dios, et al. Expires 29 December 2023 [Page 20]

Internet-Draft Enhanced ACLs June 2023

 {
 "ietf-acces-control-list:acls": {
 "acl": [
 {
 "name": "VLAN_FILTER",
 "aces": {
 "ace": [
 {
 "name": "1",
 "matches": {
 "ietf-acl-enh:vlan-filter": {
 "lower-vlan": 10,
 "upper-vlan": 20
 }
 },
 "actions": {
 "forwarding": "ietf-acces-control-list:accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 11: Example of VLAN Filter (Message Body)

4.8. Match MPLS Headers

 The ACL models can be used to create rules to match MPLS fields on a
 packet. The MPLS headers defined in [RFC3032] and [RFC5462] contains
 the following fields:

 * Traffic Class: 3 bits ’EXP’ renamed to ’Traffic Class Field."

 * Label Value: A 20-bit field that carries the actual value of the
 MPLS Label.

 * TTL: An eight-bit field that is used to encode a time-to-live
 value.

 The structure of the MPLS ACL subtree is shown in Figure 12:

Dios, et al. Expires 29 December 2023 [Page 21]

Internet-Draft Enhanced ACLs June 2023

 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
 ...
 +--rw (mpls)?
 +--:(mpls-values)
 +--rw mpls-values {match-on-mpls}?
 +--rw traffic-class? uint8
 +--rw label-position identityref
 +--rw upper-label-range? uint32
 +--rw lower-label-range? uint32
 +--rw label-block-name string
 +--rw ttl-value? uint8

 Figure 12: MPLS Header Match Subtree

5. YANG Modules

5.1. Enhanced ACL

 This model imports types from [RFC6991], [RFC8519], and [RFC8294].

 <CODE BEGINS>
 file ietf-acl-enh@2022-10-24.yang

 module ietf-acl-enh {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-acl-enh";
 prefix acl-enh;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs), Section 4.1";
 }
 import ietf-packet-fields {
 prefix packet-fields;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs), Section 4.2";
 }

 import ietf-routing-types {
 prefix rt-types;

Dios, et al. Expires 29 December 2023 [Page 22]

Internet-Draft Enhanced ACLs June 2023

 reference
 "RFC 8294: Common YANG Data Types for the Routing Area";
 }

 organization
 "IETF NETMOD Working Group";
 contact
 "WG Web: https://datatracker.ietf.org/wg/netmod/
 WG List: mailto:netmod@ietf.org

 Author: Mohamed Boucadair
 mailto:mohamed.boucadair@orange.com
 Author: Samier Barguil
 mailto:samier.barguilgiraldo.ext@telefonica.com
 Author: Oscar Gonzalez de Dios
 mailto:oscar.gonzalezdedios@telefonica.com";
 description
 "This module contains YANG definitions for enhanced ACLs.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision 2022-10-24 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Extensions to the Access Control Lists (ACLs)
 YANG Model";
 }

 feature match-on-payload {
 description
 "Match based on a pattern is supported.";
 }

 feature match-on-vlan-filter {
 description
 "Match based on a VLAN range of vlan list is supported.";

Dios, et al. Expires 29 December 2023 [Page 23]

Internet-Draft Enhanced ACLs June 2023

 }

 feature match-on-isid-filter {
 description
 "Match based on a ISID range of vlan list is supported.";
 }

 feature match-on-alias {
 description
 "Match based on aliases.";
 }

 feature match-on-mpls {
 description
 "Match based on MPLS headers.";
 }

 identity offset-type {
 description
 "Base identity for payload offset type.";
 }

 identity layer3 {
 base offset-type;
 description
 "The offset starts at the beginning of the IP header.";
 }

 identity layer4 {
 base offset-type;
 description
 "The offset start right after the IP header. This can be
 typically the beginning of transport header (e.g., TCP
 or UDP).";
 }

 identity payload {
 base offset-type;
 description
 "The offset start right after the end of the transport
 payload. For example, this represents the beginning of the
 TCP data right after any TCP options or the beginning of
 the UDP payload right after the UDP header.";
 }

 identity tcp-flag {
 description
 "Base Identity for the TCP Flags.";

Dios, et al. Expires 29 December 2023 [Page 24]

Internet-Draft Enhanced ACLs June 2023

 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity ack {
 base tcp-flag;
 description
 "Acknowledgment TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity syn {
 base tcp-flag;
 description
 "Synchronize sequence numbers.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity fin {
 base tcp-flag;
 description
 "No more data from the sender.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity urg {
 base tcp-flag;
 description
 "Urgent pointer TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity psh {
 base tcp-flag;
 description
 "The Push function flag is similar to the URG flag and tells
 the receiver to process these packets as they are received
 instead of buffering them.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity rst {
 base tcp-flag;

Dios, et al. Expires 29 December 2023 [Page 25]

Internet-Draft Enhanced ACLs June 2023

 description
 "Reset TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity ece {
 base tcp-flag;
 description
 "ECN-Echo TCP flag bit.";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity cwr {
 base tcp-flag;
 description
 "Congestion Window Reduced flag bit";
 reference
 "RFC 9293: Transmission Control Protocol (TCP), Section 3.1";
 }

 identity mpls-acl-type {
 base acl:acl-base;
 description
 "An ACL that matches on fields from the MPLS header.";
 }

 identity label-position {
 description
 "Base identity for deriving MPLS label position.";
 }

 identity top {
 base label-position;
 description
 "Top of the label stack.";
 }

 identity bottom {
 base label-position;
 description
 "Bottom of the label stack.";
 }

 typedef operator {
 type bits {
 bit not {

Dios, et al. Expires 29 December 2023 [Page 26]

Internet-Draft Enhanced ACLs June 2023

 position 0;
 description
 "If set, logical negation of operation.";
 }
 bit match {
 position 1;
 description
 "Match bit. This is a bitwise match operation defined as
 ’(data & value) == value’.";
 }
 bit any {
 position 2;
 description
 "Any bit. This is a match on any of the bits in bitmask.
 It evaluates to ’true’ if any of the bits in the value mask
 are set in the data, i.e., ’(data & value) != 0’.";
 }
 }
 description
 "Specifies how to apply the defined bitmask.
 ’any’ and ’match’ bits must not be set simultaneously.";
 }

 typedef fragment-type {
 type bits {
 bit df {
 position 0;
 description
 "Don’t fragment bit for IPv4.
 Must be set to 0 when it appears in an IPv6 filter.";
 }
 bit isf {
 position 1;
 description
 "Is a fragment.";
 }
 bit ff {
 position 2;
 description
 "First fragment.";
 }
 bit lf {
 position 3;
 description
 "Last fragment.";
 }
 }
 description

Dios, et al. Expires 29 December 2023 [Page 27]

Internet-Draft Enhanced ACLs June 2023

 "Different fragment types to match against.";
 }

 typedef ipv4-prefix-set-ref {
 type leafref {
 path "/acl-enh:defined-sets/acl-enh:ipv4-prefix-sets"
 + "/acl-enh:prefix-set/acl-enh:name";
 }
 description
 "Defines a reference to an IPv4 prefix set.";
 }

 typedef ipv6-prefix-set-ref {
 type leafref {
 path "/acl-enh:defined-sets/acl-enh:ipv6-prefix-sets"
 + "/acl-enh:prefix-set/acl-enh:name";
 }
 description
 "Defines a reference to an IPv6 prefix set.";
 }

 typedef port-set-ref {
 type leafref {
 path "/acl-enh:defined-sets/acl-enh:port-sets"
 + "/acl-enh:port-set/acl-enh:name";
 }
 description
 "Defines a reference to a port set.";
 }

 typedef protocol-set-ref {
 type leafref {
 path "/acl-enh:defined-sets/acl-enh:protocol-sets"
 + "/acl-enh:protocol-set/acl-enh:name";
 }
 description
 "Defines a reference to a protocol set.";
 }

 typedef icmp-type-set-ref {
 type leafref {
 path "/acl-enh:defined-sets/acl-enh:icmp-type-sets"
 + "/acl-enh:icmp-type-set/acl-enh:name";
 }
 description
 "Defines a reference to an ICMP type set.";
 }

Dios, et al. Expires 29 December 2023 [Page 28]

Internet-Draft Enhanced ACLs June 2023

 typedef alias-ref {
 type leafref {
 path "/acl-enh:aliases/acl-enh:alias/acl-enh:name";
 }
 description
 "Defines a reference to an alias.";
 }

 grouping tcp-flags {
 description
 "Operations on TCP flags.";
 choice mode {
 description
 "Choice of how flags are indicated.";
 case explicit {
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the TCP flags.";
 }
 leaf-list explicit-tcp-flag {
 type identityref {
 base tcp-flag;
 }
 description
 "An explicit list of the TCP flags that are to be
 matched.";
 }
 }
 case builtin {
 leaf bitmask {
 type uint16;
 description
 "The bitmask matches the last 4 bits of byte 12 and 13 of
 the TCP header. For clarity, the 4 bits of byte 12
 corresponding to the TCP data offset field are not
 included in any matching.";
 }
 }
 }
 }

 grouping fragment-fields {
 description
 "Operations on fragment types.";
 leaf operator {
 type operator;

Dios, et al. Expires 29 December 2023 [Page 29]

Internet-Draft Enhanced ACLs June 2023

 default "match";
 description
 "How to interpret the fragment type.";
 }
 leaf type {
 type fragment-type;
 description
 "What fragment type to look for.";
 }
 }

 grouping mpls-match-parameters-config {
 description
 "Parameters for the configuration of MPLS match rules.";

 leaf traffic-class {
 type uint8 {
 range "0..7";
 }
 description
 "The value of the MPLS traffic class (TC) bits,
 formerly known as the EXP bits.";
 }

 leaf label-position {
 type identityref {
 base label-position;
 }
 description
 "Position of the label";
 }

 leaf upper-label-range {
 type rt-types:mpls-label;
 description
 "Match MPLS label value on the MPLS header.
 The usage of this field indicated the upper
 range value in the top of the stack.
 This label value does not include the
 encodings of Traffic Class and TTL.";
 reference
 "RFC 3032: MPLS Label Stack Encoding";
 }

 leaf lower-label-range {
 type rt-types:mpls-label;
 description
 "Match MPLS label value on the MPLS header.

Dios, et al. Expires 29 December 2023 [Page 30]

Internet-Draft Enhanced ACLs June 2023

 The usage of this field indicated the lower
 range value in the top of the stack.
 This label value does not include the
 encodings of Traffic Class and TTL.";
 reference
 "RFC 3032: MPLS Label Stack Encoding";
 }

 leaf label-block-name {
 type string;
 description
 "Reference to a label block predefiend in the
 implementation.";
 }

 leaf ttl-value {
 type uint8;
 description
 "Time-to-live MPLS packet value match.";
 reference
 "RFC 3032: MPLS Label Stack Encoding";
 }
 }

 grouping payload {
 description
 "Operations on payload match.";
 leaf offset {
 type identityref {
 base offset-type;
 }
 description
 "Indicates the payload offset. This will indicate the position
 of the data in packet to use for the match.";
 }
 leaf offset-end {
 type uint64;
 units "bytes";
 description
 "Indicates the number of bytes, starting from the offset to
 cover when performing the prefix match.";
 }
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the prefix match.";
 }

Dios, et al. Expires 29 December 2023 [Page 31]

Internet-Draft Enhanced ACLs June 2023

 leaf prefix {
 type binary;
 description
 "The binary pattern to match against.";
 }
 }

 grouping alias {
 description
 "Specifies an alias.";
 leaf-list prefix {
 type inet:ip-prefix;
 description
 "IPv4 or IPv6 prefix of the alias.";
 }
 list port-range {
 key "lower-port";
 description
 "Port range. When only lower-port is
 present, it represents a single port number.";
 leaf lower-port {
 type inet:port-number;
 mandatory true;
 description
 "Lower port number of the port range.";
 }
 leaf upper-port {
 type inet:port-number;
 must ’. >= ../lower-port’ {
 error-message
 "The upper-port number must be greater than
 or equal to the lower-port number.";
 }
 description
 "Upper port number of the port range.";
 }
 }
 leaf-list protocol {
 type uint8;
 description
 "Identifies the target protocol number.

 Values are taken from the IANA protocol registry:
 https://www.iana.org/assignments/protocol-numbers/

 For example, 6 for TCP or 17 for UDP.";
 }
 leaf-list fqdn {

Dios, et al. Expires 29 December 2023 [Page 32]

Internet-Draft Enhanced ACLs June 2023

 type inet:domain-name;
 description
 "FQDN identifying the target.";
 }
 leaf-list uri {
 type inet:uri;
 description
 "URI identifying the target.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces/acl:ace"
 + "/acl:matches" {
 description
 "Add a new match types.";
 choice payload {
 description
 "Match a prefix pattern.";
 container prefix-pattern {
 if-feature "match-on-payload";
 description
 "Rule to perform payload-based match.";
 uses payload;
 }
 }
 choice alias {
 description
 "Match on aliases.";
 leaf-list alias-name {
 type alias-ref;
 description
 "A set of aliases.";
 }
 }
 choice mpls {
 container mpls-values {
 if-feature "match-on-mpls";
 uses mpls-match-parameters-config;
 description
 "Rule set that matches MPLS headers.";
 }
 description
 "Match MPLS headers, for example, label values";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l2" {

Dios, et al. Expires 29 December 2023 [Page 33]

Internet-Draft Enhanced ACLs June 2023

 description
 "Handle the augmentation of MAC VLAN Filter.";
 container vlan-filter {
 if-feature "match-on-vlan-filter";
 description
 "Indicates how to handle MAC VLANs.";
 leaf frame-type {
 type string;
 description
 "Entering the frame type allows the
 filter to match a specific type of frame format";
 }
 choice vlan-type {
 description
 "vlan definition from range or operator.";
 case range {
 leaf lower-vlan {
 type uint16;
 must ’. <= ../upper-vlan’ {
 error-message
 "The lower-vlan must be less than or equal to
 the upper-vlan.";
 }
 mandatory true;
 description
 "Lower boundary for a vlan.";
 }
 leaf upper-vlan {
 type uint16;
 mandatory true;
 description
 "Upper boundary for a vlan.";
 }
 }
 case operator {
 leaf operator {
 type packet-fields:operator;
 default "eq";
 description
 "Operator to be applied on the vlan below.";
 }
 leaf-list vlan {
 type uint16;
 description
 "vlan number along with the operator on which to
 match.";
 }
 }

Dios, et al. Expires 29 December 2023 [Page 34]

Internet-Draft Enhanced ACLs June 2023

 }
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l2" {
 description
 "Handle the augmentation of ISID Filter.";
 container isid-filter {
 if-feature "match-on-isid-filter";
 description
 "Indicates how to handle ISID filters.
 The I-component is responsible for mapping customer
 Ethernet traffic to the appropriate ISID.";
 choice isid-type {
 description
 "ISID definition from range or operator.";
 case range {
 leaf lower-isid {
 type uint16;
 must ’. <= ../upper-isid’ {
 error-message
 "The lower-vlan must be less than or equal to
 the upper-isid.";
 }
 mandatory true;
 description
 "Lower boundary for a ISID.";
 }
 leaf upper-isid {
 type uint16;
 mandatory true;
 description
 "Upper boundary for a ISID.";
 }
 }
 case operator {
 leaf operator {
 type packet-fields:operator;
 default "eq";
 description
 "Operator to be applied on the ISID below.";
 }
 leaf-list isid {
 type uint16;
 description
 "ISID number along with the operator on which to
 match.";

Dios, et al. Expires 29 December 2023 [Page 35]

Internet-Draft Enhanced ACLs June 2023

 }
 }
 }
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l3/acl:ipv4" {
 description
 "Handle non-initial and initial fragments for IPv4 packets.";
 container ipv4-fragment {
 description
 "Indicates how to handle IPv4 fragments.";
 uses fragment-fields;
 }
 leaf source-ipv4-prefix-list {
 type ipv4-prefix-set-ref;
 description
 "A reference to an IPv4 prefix list to match the source
 address.";
 }
 leaf destination-ipv4-prefix-list {
 type ipv4-prefix-set-ref;
 description
 "A reference to a prefix list to match the destination
 address.";
 }
 leaf next-header-set {
 type protocol-set-ref;
 description
 "A reference to a protocol set to match the next-header
 field.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l3/acl:ipv6" {
 description
 "Handles non-initial and initial fragments for IPv6 packets.";
 container ipv6-fragment {
 description
 "Indicates how to handle IPv6 fragments.";
 uses fragment-fields;
 }
 leaf source-ipv6-prefix-list {
 type ipv6-prefix-set-ref;
 description
 "A reference to a prefix list to match the source address.";

Dios, et al. Expires 29 December 2023 [Page 36]

Internet-Draft Enhanced ACLs June 2023

 }
 leaf destination-ipv6-prefix-list {
 type ipv6-prefix-set-ref;
 description
 "A reference to a prefix list to match the destination
 address.";
 }
 leaf protocol-set {
 type protocol-set-ref;
 description
 "A reference to a protocol set to match the protocol field.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l4/acl:tcp" {
 description
 "Handles TCP flags and port sets.";
 container flags-bitmask {
 description
 "Indicates how to handle TCP flags.";
 uses tcp-flags;
 }
 leaf source-tcp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the source port.";
 }
 leaf destination-tcp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the destination port.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l4/acl:udp" {
 description
 "Handle UDP port sets.";
 leaf source-udp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the source port.";
 }
 leaf destination-udp-port-set {
 type port-set-ref;
 description
 "A reference to a port set to match the destination port.";

Dios, et al. Expires 29 December 2023 [Page 37]

Internet-Draft Enhanced ACLs June 2023

 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:matches/acl:l4/acl:icmp" {
 description
 "Handle ICMP type sets.";
 leaf icmp-set {
 type icmp-type-set-ref;
 description
 "A reference to an ICMP type set to match the ICMP type
 field.";
 }
 }

 augment "/acl:acls/acl:acl/acl:aces"
 + "/acl:ace/acl:actions" {
 description
 "Rate-limit action.";
 leaf rate-limit {
 when "../acl:forwarding = ’acl:accept’" {
 description
 "Rate-limit valid only when accept action is used.";
 }
 type decimal64 {
 fraction-digits 2;
 }
 units "bytes per second";
 description
 "Indicates a rate-limit for the matched traffic.";
 }
 }

 container defined-sets {
 description
 "Predefined sets of attributes used in policy match
 statements.";
 container ipv4-prefix-sets {
 description
 "Data definitions for a list of IPv4 or IPv6
 prefixes which are matched as part of a policy.";
 list prefix-set {
 key "name";
 description
 "List of the defined prefix sets.";
 leaf name {
 type string;

Dios, et al. Expires 29 December 2023 [Page 38]

Internet-Draft Enhanced ACLs June 2023

 description
 "Name of the prefix set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf description {
 type string;
 description
 "Defined Set description.";
 }
 leaf-list prefix {
 type inet:ipv4-prefix;
 description
 "List of IPv4 prefixes to be used in match
 conditions.";
 }
 }
 }
 container ipv6-prefix-sets {
 description
 "Data definitions for a list of IPv6 prefixes which are
 matched as part of a policy.";
 list prefix-set {
 key "name";
 description
 "List of the defined prefix sets.";
 leaf name {
 type string;
 description
 "Name of the prefix set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf description {
 type string;
 description
 "A textual description of the prefix list.";
 }
 leaf-list prefix {
 type inet:ipv6-prefix;
 description
 "List of IPv6 prefixes to be used in match conditions.";
 }
 }
 }
 container port-sets {
 description
 "Data definitions for a list of ports which can
 be matched in policies.";
 list port-set {

Dios, et al. Expires 29 December 2023 [Page 39]

Internet-Draft Enhanced ACLs June 2023

 key "name";
 description
 "List of port set definitions.";
 leaf name {
 type string;
 description
 "Name of the port set -- this is used as a label to
 reference the set in match conditions.";
 }
 list port {
 key "id";
 description
 "Port numbers along with the operator on which to
 match.";
 leaf id {
 type string;
 description
 "Identifier of the list of port numbers.";
 }
 choice port {
 description
 "Choice of specifying the port number or referring to a
 group of port numbers.";
 container port-range-or-operator {
 description
 "Indicates a set of ports.";
 uses packet-fields:port-range-or-operator;
 }
 }
 }
 }
 }
 container protocol-sets {
 description
 "Data definitions for a list of protocols which can be matched
 in policies.";
 list protocol-set {
 key "name";
 description
 "List of protocol set definitions.";
 leaf name {
 type string;
 description
 "Name of the protocols set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf-list protocol {
 type union {

Dios, et al. Expires 29 December 2023 [Page 40]

Internet-Draft Enhanced ACLs June 2023

 type uint8;
 type string;
 }
 description
 "Value of the protocol set.";
 //Check if we can reuse an IANA-maintained module
 }
 }
 }
 container icmp-type-sets {
 description
 "Data definitions for a list of ICMP types which can be
 matched in policies.";
 list icmp-type-set {
 key "name";
 description
 "List of ICMP type set definitions.";
 leaf name {
 type string;
 description
 "Name of the ICMP type set -- this is used as a label to
 reference the set in match conditions.";
 }
 list types {
 key "type";
 description
 "Includes a list of ICMP types.";
 uses packet-fields:acl-icmp-header-fields;
 }
 }
 }
 }
 container aliases {
 description
 "Top-levl container for aliases.";
 list alias {
 key "name";
 description
 "List of aliases.";
 leaf name {
 type string;
 description
 "The name of the alias.";
 }
 uses alias;
 }
 }
 }

Dios, et al. Expires 29 December 2023 [Page 41]

Internet-Draft Enhanced ACLs June 2023

 <CODE ENDS>

6. Security Considerations

 The YANG modules specified in this document define a schema for data
 that is designed to be accessed via network management protocol such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 * TBC

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 * TBC

7. IANA Considerations

7.1. URI Registration

 This document requests IANA to register the following URIs in the
 "ns" subregistry within the "IETF XML Registry" [RFC3688]:

Dios, et al. Expires 29 December 2023 [Page 42]

Internet-Draft Enhanced ACLs June 2023

 URI: urn:ietf:params:xml:ns:yang:ietf-acl-enh
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:iana-icmp-types
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

7.2. YANG Module Name Registration

 This document requests IANA to register the following YANG modules in
 the "YANG Module Names" subregistry [RFC6020] within the "YANG
 Parameters" registry.

 name: ietf-acl-enh
 namespace: urn:ietf:params:xml:ns:yang:ietf-acl-enh
 maintained by IANA: N
 prefix: acl-enh
 reference: RFC XXXX

 name: ietf-icmp-types
 namespace: urn:ietf:params:xml:ns:yang:iana-icmp-types
 maintained by IANA: Y
 prefix: iana-icmp-types
 reference: RFC XXXX

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
 Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
 Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
 <https://www.rfc-editor.org/rfc/rfc3032>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

 [RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching
 (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
 Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
 2009, <https://www.rfc-editor.org/rfc/rfc5462>.

Dios, et al. Expires 29 December 2023 [Page 43]

Internet-Draft Enhanced ACLs June 2023

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/rfc/rfc6991>.

 [RFC7209] Sajassi, A., Aggarwal, R., Uttaro, J., Bitar, N.,
 Henderickx, W., and A. Isaac, "Requirements for Ethernet
 VPN (EVPN)", RFC 7209, DOI 10.17487/RFC7209, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7209>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
 "Common YANG Data Types for the Routing Area", RFC 8294,
 DOI 10.17487/RFC8294, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8294>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

Dios, et al. Expires 29 December 2023 [Page 44]

Internet-Draft Enhanced ACLs June 2023

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/rfc/rfc8519>.

 [RFC8956] Loibl, C., Ed., Raszuk, R., Ed., and S. Hares, Ed.,
 "Dissemination of Flow Specification Rules for IPv6",
 RFC 8956, DOI 10.17487/RFC8956, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8956>.

8.2. Informative References

 [I-D.boucadair-netmod-iana-registries]
 Boucadair, M., "Recommendations for Creating IANA-
 Maintained YANG Modules", Work in Progress, Internet-
 Draft, draft-boucadair-netmod-iana-registries-07, 20
 January 2023, <https://datatracker.ietf.org/doc/html/
 draft-boucadair-netmod-iana-registries-07>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8340>.

 [RFC8955] Loibl, C., Hares, S., Raszuk, R., McPherson, D., and M.
 Bacher, "Dissemination of Flow Specification Rules",
 RFC 8955, DOI 10.17487/RFC8955, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8955>.

 [RFC9132] Boucadair, M., Ed., Shallow, J., and T. Reddy.K,
 "Distributed Denial-of-Service Open Threat Signaling
 (DOTS) Signal Channel Specification", RFC 9132,
 DOI 10.17487/RFC9132, September 2021,
 <https://www.rfc-editor.org/rfc/rfc9132>.

Appendix A. XLTS Template to Generate The ICMP Type IANA-Maintained
 Module

 <CODE BEGINS>
 <?xml version="1.0" encoding="utf-8"?>
 <stylesheet
 xmlns="http://www.w3.org/1999/XSL/Transform"
 xmlns:html="http://www.w3.org/1999/xhtml"
 xmlns:iana="http://www.iana.org/assignments"
 xmlns:yin="urn:ietf:params:xml:ns:yang:yin:1"
 version="1.0">
 <import href="../../../xslt/iana-yinx.xsl"/>
 <output method="xml" encoding="utf-8"/>
 <strip-space elements="*"/>

Dios, et al. Expires 29 December 2023 [Page 45]

Internet-Draft Enhanced ACLs June 2023

 <template match="iana:registry[@id=’icmp-parameters-types’]">
 <element name="yin:typedef">
 <attribute name="name">icmp-type-name</attribute>
 <element name="yin:type">
 <attribute name="name">enumeration</attribute>
 <apply-templates
 select="iana:record[not(iana:description = ’Unassigned’ or
 starts-with(iana:description, ’Reserved’) or
 starts-with(iana:description, ’RFC3692’)) or
 contains(iana:description, ’experimental’)]"/>
 </element>
 <element name="yin:description">
 <element name="yin:text">
 This enumeration type defines mnemonic names and
 corresponding numeric values of ICMP types.
 </element>
 </element>
 <element name="yin:reference">
 <element name="yin:text">
 RFC 2708: IANA Allocation Guidelines For Values In
 the Internet Protocol and Related Headers
 </element>
 </element>
 </element>
 <element name="yin:typedef">
 <attribute name="name">icmp-type</attribute>
 <element name="yin:type">
 <attribute name="name">union</attribute>
 <element name="yin:type">
 <attribute name="name">uint8/</attribute>
 </element>
 <element name="yin:type">
 <attribute name="name">icmp-type-name</attribute>
 </element>
 </element>
 <element name="yin:description">
 <element name="yin:text">
 This type allows reference to an ICMP type using either
 the assigned mnemonic name or numeric value.
 </element>
 </element>
 </element>
 </template>

 <template match="iana:record">
 <call-template name="enum">
 <with-param name="id">
 <choose>

Dios, et al. Expires 29 December 2023 [Page 46]

Internet-Draft Enhanced ACLs June 2023

 <when test="contains(iana:description, ’(Deprecated)’)">
 <value-of select="translate(normalize-space(substring-before(iana:
description,
 ’(Deprecated)’)),’ ’,’’)"/>
 </when>
 <otherwise>
 <value-of select="translate(normalize-space(iana:description),’ ’,
’’)"/>
 </otherwise>
 </choose>
 </with-param>
 <with-param name="deprecated"
 select="contains(iana:description, ’(Deprecated)’)"/>
 </call-template>
 </template>

 </stylesheet>
 <CODE ENDS>

Appendix B. Initial Version of the The ICMP Type IANA-Maintained Module

 <CODE BEGINS>
 file iana-icmp-types@2020-09-25.yang

 module iana-icmp-types {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-icmp-types";
 prefix iana-icmp-types;

 organization
 "Internet Assigned Numbers Authority (IANA)";

 contact
 "Internet Assigned Numbers Authority

 ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094

 Tel: +1 424 254 5300

 <mailto:iana@iana.org>";

 description
 "This YANG module translates IANA registry ’ICMP Type Numbers’ to
 YANG derived types.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

Dios, et al. Expires 29 December 2023 [Page 47]

Internet-Draft Enhanced ACLs June 2023

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module was generated from the
 corresponding IANA registry using an XSLT stylesheet from the
 ’iana-yang’ project (https://github.com/llhotka/iana-yang).";

 reference
 "Internet Control Message Protocol (ICMP) Parameters
 (https://www.iana.org/assignments/icmp-parameters/)";

 revision 2020-09-25 {
 description
 "Current revision as of the revision date specified in the XML
 representation of the registry page.";
 reference
 "https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xml";
 }

 /* Typedefs */

 typedef icmp-type-name {
 type enumeration {
 enum EchoReply {
 value 0;
 description
 "Echo Reply";
 reference
 "RFC 792";
 }
 enum DestinationUnreachable {
 value 3;
 description
 "Destination Unreachable";
 reference
 "RFC 792";
 }
 enum SourceQuench {
 value 4;
 status deprecated;
 description
 "Source Quench (Deprecated)";
 reference
 "- RFC 792

Dios, et al. Expires 29 December 2023 [Page 48]

Internet-Draft Enhanced ACLs June 2023

 - RFC 6633";
 }
 enum Redirect {
 value 5;
 description
 "Redirect";
 reference
 "RFC 792";
 }
 enum AlternateHostAddress {
 value 6;
 status deprecated;
 description
 "Alternate Host Address (Deprecated)";
 reference
 "RFC 6918";
 }
 enum Echo {
 value 8;
 description
 "Echo";
 reference
 "RFC 792";
 }
 enum RouterAdvertisement {
 value 9;
 description
 "Router Advertisement";
 reference
 "RFC 1256";
 }
 enum RouterSolicitation {
 value 10;
 description
 "Router Solicitation";
 reference
 "RFC 1256";
 }
 enum TimeExceeded {
 value 11;
 description
 "Time Exceeded";
 reference
 "RFC 792";
 }
 enum ParameterProblem {
 value 12;
 description

Dios, et al. Expires 29 December 2023 [Page 49]

Internet-Draft Enhanced ACLs June 2023

 "Parameter Problem";
 reference
 "RFC 792";
 }
 enum Timestamp {
 value 13;
 description
 "Timestamp";
 reference
 "RFC 792";
 }
 enum TimestampReply {
 value 14;
 description
 "Timestamp Reply";
 reference
 "RFC 792";
 }
 enum InformationRequest {
 value 15;
 status deprecated;
 description
 "Information Request (Deprecated)";
 reference
 "- RFC 792
 - RFC 6918";
 }
 enum InformationReply {
 value 16;
 status deprecated;
 description
 "Information Reply (Deprecated)";
 reference
 "- RFC 792
 - RFC 6918";
 }
 enum AddressMaskRequest {
 value 17;
 status deprecated;
 description
 "Address Mask Request (Deprecated)";
 reference
 "- RFC 950
 - RFC 6918";
 }
 enum AddressMaskReply {
 value 18;
 status deprecated;

Dios, et al. Expires 29 December 2023 [Page 50]

Internet-Draft Enhanced ACLs June 2023

 description
 "Address Mask Reply (Deprecated)";
 reference
 "- RFC 950
 - RFC 6918";
 }
 enum Traceroute {
 value 30;
 status deprecated;
 description
 "Traceroute (Deprecated)";
 reference
 "- RFC 1393
 - RFC 6918";
 }
 enum DatagramConversionError {
 value 31;
 status deprecated;
 description
 "Datagram Conversion Error (Deprecated)";
 reference
 "- RFC 1475
 - RFC 6918";
 }
 enum MobileHostRedirect {
 value 32;
 status deprecated;
 description
 "Mobile Host Redirect (Deprecated)";
 reference
 "- David Johnson <>
 - RFC 6918";
 }
 enum IPv6Where-Are-You {
 value 33;
 status deprecated;
 description
 "IPv6 Where-Are-You (Deprecated)";
 reference
 "- Bill Simpson <mailto:Bill.Simpson&um.cc.umich.edu>
 - RFC 6918";
 }
 enum IPv6I-Am-Here {
 value 34;
 status deprecated;
 description
 "IPv6 I-Am-Here (Deprecated)";
 reference

Dios, et al. Expires 29 December 2023 [Page 51]

Internet-Draft Enhanced ACLs June 2023

 "- Bill Simpson <mailto:Bill.Simpson&um.cc.umich.edu>
 - RFC 6918";
 }
 enum MobileRegistrationRequest {
 value 35;
 status deprecated;
 description
 "Mobile Registration Request (Deprecated)";
 reference
 "- Bill Simpson <mailto:Bill.Simpson&um.cc.umich.edu>
 - RFC 6918";
 }
 enum MobileRegistrationReply {
 value 36;
 status deprecated;
 description
 "Mobile Registration Reply (Deprecated)";
 reference
 "- Bill Simpson <mailto:Bill.Simpson&um.cc.umich.edu>
 - RFC 6918";
 }
 enum DomainNameRequest {
 value 37;
 status deprecated;
 description
 "Domain Name Request (Deprecated)";
 reference
 "- RFC 1788
 - RFC 6918";
 }
 enum DomainNameReply {
 value 38;
 status deprecated;
 description
 "Domain Name Reply (Deprecated)";
 reference
 "- RFC 1788
 - RFC 6918";
 }
 enum SKIP {
 value 39;
 status deprecated;
 description
 "SKIP (Deprecated)";
 reference
 "- Tom Markson <mailto:markson&osmosys.incog.com>
 - RFC 6918";
 }

Dios, et al. Expires 29 December 2023 [Page 52]

Internet-Draft Enhanced ACLs June 2023

 enum Photuris {
 value 40;
 description
 "Photuris";
 reference
 "RFC 2521";
 }
 enum ICMPmessagesutilizedbyexperimentalmobilityprotocolssuchasSeamoby {
 value 41;
 description
 "ICMP messages utilized by experimental mobility protocols
 such as Seamoby";
 reference
 "RFC 4065";
 }
 enum ExtendedEchoRequest {
 value 42;
 description
 "Extended Echo Request";
 reference
 "RFC 8335";
 }
 enum ExtendedEchoReply {
 value 43;
 description
 "Extended Echo Reply";
 reference
 "RFC 8335";
 }
 }
 description
 "This enumeration type defines mnemonic names and corresponding
 numeric values of ICMP types.";
 reference
 "RFC 2708: IANA Allocation Guidelines For Values In the
 Internet Protocol and Related Headers";
 }

 typedef icmp-type {
 type union {
 type uint8;
 type icmp-type-name;
 }
 description
 "This type allows reference to an ICMP type using either the
 assigned mnemonic name or numeric value.";
 }
 }

Dios, et al. Expires 29 December 2023 [Page 53]

Internet-Draft Enhanced ACLs June 2023

 <CODE ENDS>

Appendix C. Acknowledgements

 Many thanks to Jon Shallow and Miguel Cros for the review and
 comments to the document, including prior to publishing the document.

 Thanks to Qiufang Ma and Victor Lopez for the comments and
 suggestions.

 The IANA-maintained model was generated using an XSLT stylesheet from
 the ’iana-yang’ project (https://github.com/llhotka/iana-yang).

 This work is partially supported by the European Commission under
 Horizon 2020 Secured autonomic traffic management for a Tera of SDN
 flows (Teraflow) project (grant agreement number 101015857).

Authors’ Addresses

 Oscar Gonzalez de Dios
 Telefonica
 Email: oscar.gonzalezdedios@telefonica.com

 Samier Barguil
 Telefonica
 Email: samier.barguilgiraldo.ext@telefonica.com

 Mohamed Boucadair
 Orange
 Email: mohamed.boucadair@orange.com

 Qin Wu
 Huawei
 Email: bill.wu@huawei.com

Dios, et al. Expires 29 December 2023 [Page 54]

NETMOD Working Group Q. Wu
Internet-Draft B. Claise
Updates: 8407 (if approved) Huawei
Intended status: Standards Track M. Boucadair
Expires: 9 January 2024 Orange
 P. Liu
 Z. Du
 China Mobile
 8 July 2023

 Node Tags in YANG Modules
 draft-ietf-netmod-node-tags-10

Abstract

 This document defines a method to tag nodes that are associated with
 the operation and management data in YANG modules. This method for
 tagging YANG nodes is meant to be used for classifying either data
 nodes or instances of data nodes from different YANG modules and
 identifying their characteristic data. Tags may be registered as
 well as assigned during the definition of the module, assigned by
 implementations, or dynamically defined and set by users.

 This document also provides guidance to future YANG data model
 writers; as such, this document updates RFC 8407.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 9 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wu, et al. Expires 9 January 2024 [Page 1]

Internet-Draft YANG Node Tags July 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Sample Use Cases for Node Tags 6
 4. Node Tag Values . 6
 4.1. IETF Tags . 7
 4.2. Vendor Tags . 7
 4.3. User Tags . 7
 4.4. Reserved Tags . 7
 5. Node Tag Management . 8
 5.1. Module Design Tagging 8
 5.2. Implementation Tagging 8
 5.3. User Tagging . 8
 6. Node Tags Module Structure 8
 6.1. Node Tags Module Tree 8
 7. Node Tags YANG Module . 9
 8. Guidelines to Model Writers 12
 8.1. Define Standard Tags 12
 9. IANA Considerations . 13
 9.1. YANG Data Node Tag Prefixes Registry 13
 9.2. IETF YANG Data Node Tags Registry 14
 9.3. Updates to the IETF XML Registry 15
 9.4. Updates to the YANG Module Names Registry 15
 10. Security Considerations 16
 11. Acknowledgements . 16
 12. Contributors . 17
 13. References . 17
 13.1. Normative References 17
 13.2. Informative References 18
 Appendix A. Instance Level Tunnel Tagging Example 20
 Appendix B. NETCONF Example 21
 Appendix C. Non-NMDA State Module 22
 Appendix D. Targeted Data Fetching Example 25
 Appendix E. Changes between Revisions 27
 Authors’ Addresses . 30

Wu, et al. Expires 9 January 2024 [Page 2]

Internet-Draft YANG Node Tags July 2023

1. Introduction

 The use of tags for classification and organization purposes is
 widespread, not only within IETF protocols, but globally in the
 Internet (e.g., "#hashtags"). For the specific case of YANG data
 models, a module tag has already been defined as a string that is
 associated with a module name at the module level [RFC8819]for YANG
 modules classification.

 Many data models have been specified by various Standards Developing
 Organizations (SDOs) and the Open Source community, and it is likely
 that many more will be specified. These models cover many of the
 networking protocols and techniques. However, data nodes defined by
 these technology-specific data models might represent only a portion
 of fault, configuration, accounting, performance, and security
 (FCAPS) management information ([FCAPS]) at different levels and
 network locations, but also categorized in various different ways.
 Furthermore, there is no consistent classification criteria or
 representations for a specific service, feature, or data source.

 This document defines tags for both nodes in the schema tree and
 instance nodes in the data tree, and shows how these tags can be
 associated with nodes within a YANG module, to:

 * Provide dictionary meaning for specific targeted data nodes;

 * Indicate a relationship between data nodes within the same YANG
 module or from different YANG modules;

 * Identify auxiliary data properties related to data nodes;

 * Identify key performance metric related data nodes and the
 absolute XPath expression identifying the element path to the
 nodes.

 To that aim, this document defines a YANG module [RFC7950] that
 augments the YANG Module Tags ([RFC8819]) to provide a list of node
 entries to which add node tags or from which to remove node tags, as
 well as a way to view the set of node tags associated with specific
 data nodes or instance of data nodes within YANG modules.This new
 module is: "ietf-node-tags" (Section 7).

 Typically, NETCONF clients can discover node tags supported by a
 NETCONF server by means of the <get-data> operation on the
 operational datastore (Section 3.1 of [RFC8526]) via the "ietf-node-
 tags" module. Alternatively, <get-schema> operation [RFC6022] can be
 used to retrieve tags for nodes in the schema tree in any data
 module. These node tags can be used by a NETCONF [RFC6241] or

Wu, et al. Expires 9 January 2024 [Page 3]

Internet-Draft YANG Node Tags July 2023

 RESTCONF [RFC8040] client to classify either data nodes or instance
 of these data nodes from different YANG modules and identify
 characteristic data and associated path to the nodes or node
 instances. Therefore, the NETCONF/ RESTCONF client can query
 specific configuration or operational state on a server corresponding
 to characteristic data.

 Similar to YANG module tags defined in [RFC8819], these node tags
 (e.g., tags for node in the schema node) may be registered or
 assigned during the module definition, assigned (e.g., tags for nodes
 in the data tree) by implementations, or dynamically defined and set
 by users. The contents of node tags from the operational state view
 are constructed using the following steps:

 1. System tags (i.e., tags of "system" origin) that are assigned
 during the module definition time are added;

 2. User-configured tags (i.e., tags of "intended" origin) that are
 dynamically defined and added by users at runtime;

 3. Any tag that is equal to a masked-tag is removed.

 This document defines an extension statement to indicate tags for
 data nodes. YANG metadata annotations are also defined in [RFC7952]
 as a YANG extension. The values of YANG metadata annotation are
 attached to a given data node instance and decided and assigned by
 the server and sent to the client (e.g., the origin value indicates
 to the client the origin of a particular data node instance) while
 tags for data node in the schema tree defined in Section 6 are
 retrieved centrally via the "ietf-node-tags" module and can be either
 assigned during the module defintion time or dynamically set by the
 client for a given data node instance.

 This document also defines an IANA registry for tag prefixes and a
 set of globally assigned tags (Section 9).

 Section 8 provides guidelines for authors of YANG data models. This
 document updates [RFC8407].

 The YANG data model in this document conforms to the Network
 Management Datastore Architecture defined in [RFC8342].

Wu, et al. Expires 9 January 2024 [Page 4]

Internet-Draft YANG Node Tags July 2023

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here:

 * Data Node

 * Data Tree

 * Schema Tree

 This document defines the following term:

 Node Tag: Tag for YANG nodes used for classifying either data nodes
 or instances of data nodes from different YANG modules and
 identifying their characteristic data.

 Metric: Metrics are a specific kind of telemetry data. They
 represent a snapshot of the current state for a set of data. They
 are distinct from logs or events, which focus on records or
 information about individual events [OpenMetrics].

 Info: Info is used to expose textual information which SHOULD NOT
 change during process lifetime. Common examples are an
 application’s version [OpenMetrics].

 Gauge: Gauges are current measurements, such as bytes of memory
 currently used or the number of items in a queue. For gauges the
 absolute value is what is of interest to a user [OpenMetrics].

 Counter: Counters measure discrete events. Common examples are the
 number of HTTP requests received, CPU seconds spent, or bytes
 sent. For counters how quickly they are increasing over time is
 what is of interest to a user [OpenMetrics].

 Summary: Summaries measure distributions of discrete events and can
 be used to measure an average event size [OpenMetrics].

 Unknown: Unknown MAY be used when it is impossible to determine the
 types of individual metrics from 3rd party systems [OpenMetrics].

Wu, et al. Expires 9 January 2024 [Page 5]

Internet-Draft YANG Node Tags July 2023

 The meanings of the symbols in tree diagrams are defined in
 [RFC8340].

3. Sample Use Cases for Node Tags

 The following describes some use cases to illustrate the use of node
 tags. This section does not intend to be exhaustive.

 An example of the use of tags is to search discrete categories of
 YANG nodes that are scattered across the same or different YANG
 modules supported by a device. For example, if instances of these
 nodes in YANG modules are adequately tagged and set by a first client
 ("Client A") via the "ietf-node-tags" module (Section 7) and
 retrieved by another client ("Client B") from the operational
 datastore, then "Client B" can obtain the path to the tagged nodes
 and subscribe only to network performance related data node instances
 in the operational datastore supported by a device.

 "Client B" can also subscribe to updates from the operational
 datastore using the "ietf-node-tags" module. Any tag changes in the
 updates will then resynchronize to the "Client B".

 Also, tag classification is useful for users searching data node
 repositories. A query restricted to the "ietf:counter" data node tag
 in the "ietf-node-tags" module can be used to return only the YANG
 nodes that are associated with the counter. Without tags, a user
 would need to know the name of all the IETF YANG data nodes or
 instances of data nodes in different YANG modules.

 Future management protocol extensions could allow for filtering
 queries of configuration or operational state on a server based on
 tags (for example, return all operational state related to system
 management).

4. Node Tag Values

 All node tags (except in some cases of user tags as described in
 Section 4.3) begin with a prefix indicating who owns their
 definition. All tag prefixes MUST end with a colon and Colons MUST
 NOT be used within a prefix. An IANA registry (Section 9.1) is used
 to register node tag prefixes. Three prefixes are defined in the
 subsections that follow.

 No further structure is imposed by this document on the value
 following the registered prefix, and the value can contain any YANG
 type ’string’ characters except carriage returns, newlines, tabs, and
 spaces.

Wu, et al. Expires 9 January 2024 [Page 6]

Internet-Draft YANG Node Tags July 2023

 Except for the conflict-avoiding prefix, this document is
 purposefully not specifying any structure on (i.e., restricting) the
 tag values. The intent is to avoid arbitrarily restricting the
 values that designers, implementers, and users can use. As a result
 of this choice, designers, implementers, and users are free to add or
 not add any structure they may require to their own tag values.

4.1. IETF Tags

 An IETF tag is a node tag that has the prefix "ietf:".

 All IETF node tags are registered with IANA in the registry defined
 in Section 9.2. These IETF Node Tags MUST conform to Net-Unicode as
 defined in [RFC5198], and SHOULD not need normalization.

4.2. Vendor Tags

 A vendor tag is a tag that has the prefix "vendor:".

 These tags are defined by the vendor that implements the module, and
 are not registered with IANA. However, it is RECOMMENDED that the
 vendor includes extra identification in the tag to avoid collisions,
 such as using the enterprise or organization name following the
 "vendor:" prefix (e.g., vendor:entno:vendor-defined-classifier)
 [RFC9371].

4.3. User Tags

 User tags are defined by a user/administrator and are not registered
 by IANA.

 Any tag with the prefix "user:" is a user tag. Furthermore, any tag
 that does not contain a colon (":", i.e., has no prefix) is also a
 user tag.

 Users are not required to use the "user:" prefix; however, doing so
 is RECOMMENDED.

4.4. Reserved Tags

 Section 9.1 describes the IANA registry of tag prefixes. Any prefix
 not included in that registry is reserved for future use, but tags
 starting with such a prefix are still valid tags.

 Therefore an implementation SHOULD be able to process all tags
 regardless of their prefixes.

Wu, et al. Expires 9 January 2024 [Page 7]

Internet-Draft YANG Node Tags July 2023

5. Node Tag Management

 Tags may be associated with a data node within a YANG module in a
 number of ways. Typically, tags may be defined and associated at the
 module design time, at implementation time without the need of a live
 server, or via user administrative control. As the main consumers of
 node tags are users, users may also remove any tag from a live
 server, no matter how the tag became associated with a data node
 within a YANG module.

5.1. Module Design Tagging

 A data node definition MAY indicate a set of node tags to be added by
 a module’s implementer. These design time tags are indicated using
 ’node-tag’ extension statement.

 If the data node is defined in an IETF Standards Track document, node
 tags MUST be IETF Tags (Section 4.1). Thus, new data nodes can drive
 the addition of new IETF tags to the IANA registry defined in
 Section 9.2, and the IANA registry can serve as a check against
 duplication.

5.2. Implementation Tagging

 An implementation that wishes to define additional tags to associate
 with data nodes within a YANG module MAY do so at implementation
 time. These tags SHOULD be IETF (i.e., registered)), but MAY be
 vendor tags. IETF tags allows better interoperability than vendor
 tags.

5.3. User Tagging

 Node tags that are dynamically defined, with or without a prefix, can
 be added by the user from a server using normal configuration
 mechanisms.

 In order to remove a node tag from the operational datastore, the
 user adds a matching "masked-tag" entry for a given node within the
 ’ietf-node-tags’ module.

6. Node Tags Module Structure

6.1. Node Tags Module Tree

 The tree associated with the "ietf-node-tags" module is shown as
 figure 1:

Wu, et al. Expires 9 January 2024 [Page 8]

Internet-Draft YANG Node Tags July 2023

 module: ietf-node-tags
 augment /tags:module-tags/tags:module:
 +--rw node-tags
 +--rw node* [id]
 +--rw id unit64
 +--rw node-selector nacm:node-instance-identifier
 +--rw tags* tags:tag
 +--rw masked-tag* tags:tag

 Figure 1: YANG Module Node Tags Tree Diagram

7. Node Tags YANG Module

 The "ietf-node-tags" module imports types from [RFC8819] and
 [RFC8341].

 <CODE BEGINS> file "ietf-node-tags@2022-02-04.yang"
 module ietf-node-tags {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-node-tags";
 prefix ntags;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control
 Model";
 }
 import ietf-module-tags {
 prefix tags;
 reference
 "RFC 8819: YANG Module Tags";
 }

 organization
 "IETF NetMod Working Group (NetMod)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>

 Editor: Benoit Claise
 <mailto:benoit.claise@huawei.com>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>

Wu, et al. Expires 9 January 2024 [Page 9]

Internet-Draft YANG Node Tags July 2023

 Editor: Peng Liu
 <mailto:liupengyjy@chinamobile.com>

 Editor: Zongpeng Du
 <mailto:duzongpeng@chinamobile.com>";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.
 description
 "This module describes a mechanism associating
 tags with YANG node within YANG modules. Tags may be IANA
 assigned or privately defined.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://datatracker.ietf.org/html/rfcXXXX); see the RFC
 itself for full legal notices.";

 // RFC Ed.: Update the date below with the date of RFC
 // publication and RFC number and remove this note.
 revision 2022-02-04 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Node Tags in YANG Modules";
 }
 extension node-tag {
 argument tag;
 description
 "The argument ’tag’ is of type ’tag’. This extension statement
 is used by module authors to indicate node tags that should
 be added automatically by the system. As such, the origin of
 the value for the pre-defined tags should be set to ’system’.";
 }

 augment "/tags:module-tags/tags:module" {
 description
 "Augment the Module Tags module with node tag
 attributes.";
 container node-tags {

Wu, et al. Expires 9 January 2024 [Page 10]

Internet-Draft YANG Node Tags July 2023

 description
 "Contains the list of nodes or node instances and their
 associated node tags.";
 list node {
 key "id";
 description
 "Includes a list of nodes and their associated
 node tags.";
 leaf id {
 type uint64;
 description
 "Identification of each data node within YANG module. It is
 unique 64-bit unsigned integers.";
 }
 leaf node-selector {
 type nacm:node-instance-identifier;
 description
 "Selects the data nodes for which tags are specified.";
 }
 leaf-list tags {
 type tags:tag;
 description
 "Lists the tags associated with the node within
 the YANG module.

 See the IANA ’YANG Node Tag Prefixes’ registry
 for reserved prefixes and the IANA ’IETF YANG Data
 Node Tags’ registry for IETF tags.

 The ’operational’ state view of this list is
 constructed using the following steps:

 1) System tags (i.e., tags of ’system’ origin) are
 added.
 2) User configured tags (i.e., tags of ’intended’
 origin) are added.
 3) Any tag that is equal to a masked-tag is removed.";
 reference
 "RFC XXXX: node Tags in YANG Data
 Modules, Section 9";
 }
 leaf-list masked-tag {
 type tags:tag;
 description
 "The list of tags that should not be associated with the
 node within the YANG module. The user can remove (mask)
 tags from the operational state datastore by adding them
 to this list. It is not an error to add tags to this list

Wu, et al. Expires 9 January 2024 [Page 11]

Internet-Draft YANG Node Tags July 2023

 that are not associated with the data node within YANG
 module, but they have no operational effect.";
 }
 }
 }
 }
 }
 <CODE ENDS>

8. Guidelines to Model Writers

 This section updates [RFC8407] by providing text that may be regarded
 as a new subsection to Section 4 of that document. It does not
 change anything already present in [RFC8407].

8.1. Define Standard Tags

 A module MAY indicate, using node tag extension statements, a set of
 node tags that are to be automatically associated with nodes within
 the module (i.e., not added through configuration).

 module example-module-A {
 //...
 import ietf-node-tags { prefix ntags; }

 container top {
 list X {
 leaf foo {
 ntags:node-tag "ietf:metric";
 }
 leaf bar {
 ntags:node-tag "ietf:info";
 }
 }
 }
 // ...
 }

 The module writer can use existing standard node tags, or use new
 node tags defined in the data node definition, as appropriate.

 For IETF standardized modules, new node tags MUST be assigned in the
 IANA registry defined in section 9.2 of RFC xxxx.

Wu, et al. Expires 9 January 2024 [Page 12]

Internet-Draft YANG Node Tags July 2023

 A data node can contain one or multiple node tags. Not all data
 nodes need to be tagged. A data node to be tagged with an initial
 value from Table 2 can be one of ’container’, ’leaf-list’, ’list’, or
 ’leaf’. The ’container’,’leaf-list’,’list’, or ’leaf’ node not
 representing a snapshot of the current state for a set of data MUST
 not be tagged. The notification and action nodes MUST not be tagged.

 All tag values described in Table 2 can be inherited down the
 containment hierarchy if the data nodes tagged with those tag values
 is one of ’container’, ’leaf-list’, or ’list’.

9. IANA Considerations

9.1. YANG Data Node Tag Prefixes Registry

 This document requests IANA to create "YANG Node Tag Prefixes"
 subregistry in "YANG Node Tag" registry.

 Prefix entries in this registry should be short strings consisting of
 lowercase ASCII alpha-numeric characters and a final ":" character.

 The allocation policy for this registry is Specification Required
 [RFC8126].

 The Reference and Assignee values should be sufficient to identify
 and contact the organization that has been allocated the prefix.

 There is no specific guidance for the Designated Expert and there is
 a presumption that a code point should be granted unless there is a
 compelling reason to the contrary. The initial values for this
 registry are as follows:

 +----------+----------------------------------+-----------+----------+
 | Prefix | Description | Reference | Assignee |
 +----------+----------------------------------+-----------+----------+
ietf:	IETF Tags allocated in the IANA	[This	IETF
	IETF YANG Node Tags	document]	
	registry		
vendor:	Non-registered tags allocated by	[This	IETF
	the module’s implementer.	document]	
user:	Non-registered tags allocated by	[This	IETF
	and for the user.	document]	
 +----------+----------------------------------+-----------+----------+

 Figure 2: Table 1

Wu, et al. Expires 9 January 2024 [Page 13]

Internet-Draft YANG Node Tags July 2023

 Other standards organizations (SDOs) wishing to allocate their own
 set of tags should request the allocation of a prefix from this
 registry.

9.2. IETF YANG Data Node Tags Registry

 This document requests IANA to create "IETF Node Tags" subregistry in
 "YANG Node Tag" registry. This subregistry appears below "YANG Node
 Tag Prefixes" registry.

 This subregistry allocates tags that have the registered prefix
 "ietf:". New values should be well considered and not achievable
 through a combination of already existing IETF tags.

 The allocation policy for this subregistry is IETF Review with Expert
 Review[RFC8126]. The Designated Expert is expected to verify that
 IANA assigned tags conform to Net-Unicode as defined in [RFC5198],
 and shall not need normalization.

 The initial values for this subregistry are as follows:

 +----------------------------+--------------------------+-----------+
 | Node Tag | Description | Reference |
 +----------------------------+--------------------------+-----------+
ietf:metric	Represent metric data	[This
	(e.g., ifstatistics)	document]
	associated with specific	[Open
	node (e.g.,interfaces)	Metrics]
ietf:info	Represent texture info	[This
	(e.g., software revision)	document]
	associated with specific	[Open
	node (e.g.,component)	Metrics]
ietf:delay	Represent the delay metric	[This
	data associated with	document
	specific node.	[RFC2681]
		[RFC7679]
ietf:jitter	Represent the jitter metric [This	
	data asociated with	document]
	specific node.	[RFC3393]
ietf:loss	Represent the loss metric	[This
	data associated with	document]
	specific node.	[RFC7680]

Wu, et al. Expires 9 January 2024 [Page 14]

Internet-Draft YANG Node Tags July 2023

		[RFC6673]
ietf:counter	Represent any metric value	[This
	associated with specific	document]
	node that monotonically	[Open
	increases over time,	Metrics]
	starting from zero.	
ietf:gauge	Represent current	[This
	measurements associated	document]
	with specific node	[Open
	that may increase,	Metrics]
	decrease or stay constant.	
ietf:summary	Represent the metric value	[This
	associated with specific	document]
	node that measures	[Open
	distributions of discrete	Metrics]
	events without knowing	
	predefined range.	
ietf:unknown	Represent the metric value	[This
	associated with specific	document]
	node that can not	[Open
	determine the type of	Metrics]
	metric.	
 +----------------------------+--------------------------+-----------+

 Figure 3: Table 2

9.3. Updates to the IETF XML Registry

 This document registers the following namespace URIs in the "ns"
 subregistry within the "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-node-tags
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-node-tags-state
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

9.4. Updates to the YANG Module Names Registry

 This document registers the following two YANG modules in the YANG
 Module Names registry [RFC6020] within the "YANG Parameters"
 registry:

Wu, et al. Expires 9 January 2024 [Page 15]

Internet-Draft YANG Node Tags July 2023

 name: ietf-node-tags
 namespace: urn:ietf:params:xml:ns:yang:ietf-node-tags
 prefix: ntags
 reference: RFC XXXX

 name: ietf-node-tags-state
 namespace: urn:ietf:params:xml:ns:yang:ietf-node-tags-state
 prefix: ntags-s
 reference: RFC XXXX

10. Security Considerations

 The YANG module specified in this document defines schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content, e.g., the presence of tags
 may reveal information about the way in which data nodes or node
 instances are used and therefore providing access to private
 information or revealing an attack vector should be restricted. Note
 that appropriate privilege and security levels need to be applied to
 the addition and removal of user tags to ensure that a user receives
 the correct data.

 This document adds the ability to associate node tag with data nodes
 or instances of data nodes within the YANG modules. This document
 does not define any actions based on these associations, and none are
 yet defined, and therefore it does not by itself introduce any new
 security considerations.

 Users of the node tag meta-data may define various actions to be
 taken based on the node tag meta-data. These actions and their
 definitions are outside the scope of this document. Users will need
 to consider the security implications of any actions they choose to
 define, including the potential for a tag to get ’masked’ by another
 user.

11. Acknowledgements

 The authors would like to thank Ran Tao for his major contributions
 to the initial modeling and use cases.

Wu, et al. Expires 9 January 2024 [Page 16]

Internet-Draft YANG Node Tags July 2023

 The authors would also like to acknowledge the comments and
 suggestions received from Juergen Schoenwaelder, Andy Bierman, Lou
 Berger, Jaehoon Paul Jeong, Wei Wang, Yuan Zhang, Ander Liu, YingZhen
 Qu, Boyuan Yan, Adrian Farrel, and Mahesh Jethanandani.

12. Contributors

 Liang Geng
 Individual
 32 Xuanwumen West St, Xicheng District
 Beijing 10053

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Wu, et al. Expires 9 January 2024 [Page 17]

Internet-Draft YANG Node Tags July 2023

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8819] Hopps, C., Berger, L., and D. Bogdanovic, "YANG Module
 Tags", RFC 8819, DOI 10.17487/RFC8819, January 2021,
 <https://www.rfc-editor.org/info/rfc8819>.

13.2. Informative References

 [FCAPS] International Telecommunication Union, "X.700 : Management
 framework for Open Systems Interconnection (OSI) for CCITT
 applications", , September 1992,
 <http://www.itu.int/rec/T-REC-X.700-199209-I/en>.

 [OpenMetrics]
 OpenMetrics, "OpenMetrics, a cloud-native, highly scalable
 metrics protocol", , 31 March 2022,
 <https://github.com/OpenObservability/OpenMetrics/blob/
 main/specification/OpenMetrics.md>.

 [RFC6022] Scott, M. and M. Bjorklund, "YANG Module for NETCONF
 Monitoring", RFC 6022, DOI 10.17487/RFC6022, October 2010,
 <https://www.rfc-editor.org/info/rfc6022>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

Wu, et al. Expires 9 January 2024 [Page 18]

Internet-Draft YANG Node Tags July 2023

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [RFC9195] Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", RFC 9195, DOI 10.17487/RFC9195, February
 2022, <https://www.rfc-editor.org/info/rfc9195>.

 [RFC9196] Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
 Describing Capabilities for Systems and Datastore Update
 Notifications", RFC 9196, DOI 10.17487/RFC9196, February
 2022, <https://www.rfc-editor.org/info/rfc9196>.

 [RFC9371] Baber, A. and P. Hoffman, "Registration Procedures for
 Private Enterprise Numbers (PENs)", RFC 9371,
 DOI 10.17487/RFC9371, March 2023,
 <https://www.rfc-editor.org/info/rfc9371>.

Wu, et al. Expires 9 January 2024 [Page 19]

Internet-Draft YANG Node Tags July 2023

Appendix A. Instance Level Tunnel Tagging Example

 In the example shown in the following figure,the ’tunnel-svc’ data
 node is a list node defined in a ’example-tunnel-pm’ module and has 7
 child nodes: ’name’,’create-time’,’modified-time’,’average-
 latency’,’packet-loss’,’min-latency’,’max-latency’ leaf node. In
 these child nodes, the ’name’ leaf node is the key leaf for the
 ’tunnel-svc’ list. Following is the tree diagram [RFC8340] for the
 "example-tunnel-pm" module:

 module: example-tunnel-pm
 +--rw tunnel-svc* [name]
 | +--rw name string
 | +--ro create-time yang:date-and-time
 | +--ro modified-time yang:date-and-time
 | +--ro average-latency yang:gauge64
 | +--ro packet-loss yang:counter64
 | +--ro min-latency yang:gauge64
 | +--ro max-latency yang:gauge64

 To help identify specific data for a customer, users tags on specific
 instances of the data nodes [RFC9195][RFC9196] are created as
 follows:

Wu, et al. Expires 9 January 2024 [Page 20]

Internet-Draft YANG Node Tags July 2023

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 <datastore>ds:running</datastore>
 <config>
 <module-tag>
 <module>
 <name>example-tunnel-pm</name>
 <node-tags
 xmlns="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <node>
 <id>1743</id>
 <node-selector>/tp:tunnel-svc[name=’foo’]/tp:packet-loss
 /</name>
 <tag>user:customer1_example_com</tag>
 <tag>user:critical</tag>
 </node>
 <node>
 <id>1744</id>
 <node-selector>/tp:tunnel-svc[name=’bar’]/tp:modified-time
 /</node-selctor>
 <tag>user:customer2_example_com</tag>
 </node>
 </node-tags>
 </module>
 </module-tag>
 </config>
 </edit-data>
 </rpc>

 Note that the ’user:critical’ tag is one addtional new tag value.

Appendix B. NETCONF Example

 The following is a NETCONF example result from a query of node tags
 list. For the sake of brevity only a few module and associated data
 node results are provided. The example uses the folding defined in
 [RFC8792].

Wu, et al. Expires 9 January 2024 [Page 21]

Internet-Draft YANG Node Tags July 2023

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <ns0:data xmlns:ns0="urn:ietf:params:xml:ns:netconf:base:1.0">
 <t:module-tags xmlns:t="urn:ietf:params:xml:ns:yang:ietf-module-tags">
 <t:module>
 <t:name>ietf-interfaces</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>1723</s:id>
 <s:node-selector>
 /if:interfaces/if:interface/if:statistics/if:in-errors
 </s:node-selector>
 <s:tag>ietf:metric</s:tag>
 <s:tag>ietf:loss</s:tag>
 <s:tag>vendor:agg</s:tag>
 </s:node>
 </s:node-tags>
 </t:module>
 <t:module>
 <t:name>ietf-ip</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>1733</s:id>
 <s:node-selector>/if:interfaces/if:interface/ip:ipv4/ip:mtu
 </s:node-selector>
 <s:tag>ietf:metric</s:tag>
 </s:node>
 </s:node-tags>
 </t:module>
 </t:module-tags>
 </ns0:data>

 Figure 4: Example NETCONF Query Output

Appendix C. Non-NMDA State Module

 As per [RFC8407], the following is a non-NMDA module to support
 viewing the operational state for non-NMDA compliant servers.

 <CODE BEGINS> file "ietf-node-tags-state@2022-02-03.yang"
 module ietf-node-tags-state {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-node-tags-state";
 prefix ntags-s;

Wu, et al. Expires 9 January 2024 [Page 22]

Internet-Draft YANG Node Tags July 2023

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control
 Model";
 }
 import ietf-module-tags {
 prefix tags;
 }
 import ietf-module-tags-state {
 prefix tags-s;
 reference
 "RFC 8819: YANG Module Tags ";
 }
 organization
 "IETF NetMod Working Group (NetMod)";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List:<mailto:netmod@ietf.org>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>

 Editor: Benoit Claise
 <mailto:benoit.claise@huawei.com>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>

 Editor: Peng Liu
 <mailto:liupengyjy@chinamobile.com>

 Editor: Zongpeng Du
 <mailto:duzongpeng@chinamobile.com>";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.
 description
 "This module describes a mechanism associating data node
 tags with YANG data node within YANG modules. Tags may be
 IANA assigned or privately defined.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License

Wu, et al. Expires 9 January 2024 [Page 23]

Internet-Draft YANG Node Tags July 2023

 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://datatracker.ietf.org/html/rfcXXXX); see the RFC
 itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and RFC number and remove this note.
 revision 2022-02-04 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Node Tags in YANG Data
 Modules";
 }
 augment "/tags-s:module-tags-state/tags-s:module" {
 description
 "Augments the Module Tags module with node tag
 attributes.";
 container node-tags {
 config false;
 status deprecated;
 description
 "Contains the list of data nodes and their
 associated self describing tags.";
 list node {
 key "id";
 status deprecated;
 description
 "Lists the data nodes and their associated self
 describing tags.";
 leaf id {
 type uint64;
 description
 "Identification of each data node within YANG module. It is
 unique 64-bit unsigned integers.";
 }
 leaf node-selctor {
 type nacm:node-instance-identifier;
 mandatory true;
 status deprecated;
 description
 "Selects the data nodes for which tags are
 specified.";
 }
 leaf-list tags {

Wu, et al. Expires 9 January 2024 [Page 24]

Internet-Draft YANG Node Tags July 2023

 type tags:tag;
 status deprecated;
 description
 "Lists the tags associated with the data node within
 the YANG module.

 See the IANA ’YANG Node Tag Prefixes’ registry
 for reserved prefixes and the IANA ’IETF YANG Data
 Node Tags’ registry for IETF tags.

 The ’operational’ state view of this list is
 constructed using the following steps:

 1) System tags (i.e., tags of ’system’ origin) are
 added.
 2) User configured tags (i.e., tags of ’intended’
 origin) are added.
 3) Any tag that is equal to a masked-tag is removed.";
 reference
 "RFC XXXX: Node Tags in YANG Data
 Modules, Section 9";
 }
 leaf-list masked-tag {
 type tags:tag;
 status deprecated;
 description
 "The list of tags that should not be associated with the
 data node within the YANG module. The user can remove
 (mask) tags from the operational state datastore by
 adding them to this list. It is not an error to add
 tags to this list that are not associated with the
 data node within YANG module, but they have no
 operational effect.";
 }
 }
 }
 }
 }
 <CODE ENDS>

Appendix D. Targeted Data Fetching Example

 The following provides tagged data node Fetching example. The
 subscription "id" values of 22 used below is just an example. In
 production, the actual values of "id" might not be small integers.

Wu, et al. Expires 9 January 2024 [Page 25]

Internet-Draft YANG Node Tags July 2023

 +-----------+ +-----------+
 | Subscriber| | Publisher |
 +-----+-----+ +-----+-----+
 | |
 | Node Tagging Fetching |
 | (id, node-tag = metric) |
 |<-----------------------------------+
 | |
 | establish-subscription |
 +----------------------------------->|
 | |
 | RPC Reply: OK, id = 22 |
 |<-----------------------------------+
 | |
 | Notification Message (for 22) |
 |<-----------------------------------+
 | |

 The subscriber can query node tag list from operational datastore in
 the network device using "ietf-node-tags" module defined in this
 document and fetch tagged data node instances and associated data
 path to the datastore node. The node tag information instruct the
 receiver to subscribe tagged data node (e.g., performance metric data
 nodes) using standard subscribed notification mechanism [RFC8639]
 [RFC8641].

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version="1.0" encoding="UTF-8"?>
 <t:module-tags
 xmlns:t="urn:ietf:params:xml:ns:yang:ietf-module-tags">
 <t:module>
 <t:name>ietf-interfaces</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>1723</s:id>
 <s:node-selector>/if:interfaces/if:interface/if:in-errors
 /</s:node-selector>
 <s:tag>ietf:metric</s:tag>
 <s:tag>ietf:loss</s:tag>
 </s:node>
 </s:node-tags>
 </t:module>
 </module-tags>

 Figure 5: List of Available Target Objects

Wu, et al. Expires 9 January 2024 [Page 26]

Internet-Draft YANG Node Tags July 2023

 With node tag information returned,e.g., in the ’get-data’ operation,
 the subscriber identifies tagged data node and associated data path
 to the datastore node and sends a standard establish-subscription RPC
 [RFC8639]and [RFC8641] to subscribe tagged data nodes that are
 interests to the client application from the publisher. The
 publisher returns specific data node types of operational state
 (e.g., in-errors statistics data) subscribed by the client as
 follows:

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifica\
 tions"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /if:interfaces/if:interface/if:statistics/if:in-errors
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </establish-subscription>
 </netconf:rpc>

Appendix E. Changes between Revisions

 Editorial Note (To be removed by RFC Editor)

 v09 - v10

 * Remove identityref type from YANG module to avoid duplciation with
 IETF node tag and align with Module tag design in RFC 8819.

 * Add one key leaf using unsigned integer type to identify each data
 node and modify the id leaf into path leaf.

 * Clarify the colon’s meaning and how it is used in the node tags.

 * Remove Appendix A and Update Appendix B to explain how additonal
 tags can be added at the implementation time.

Wu, et al. Expires 9 January 2024 [Page 27]

Internet-Draft YANG Node Tags July 2023

 * Module structure changes and YANG module code changes to align
 with Module tag design in RFC 8819.

 * Add relevant RFCs referencing to IETF node tags defined in section
 9.2 and provide additional term definition to support IETF node
 tags defined in section 9.2.

 * Specify which data nodes can be tagged, which data nodes can not
 in section 8.1.

 v08 - v09

 * Clarification on the relation with metadata annotation in section
 1.

 * Clarification on how masked-tag is used in section 5.3.

 * Other editorial changes.

 v07 - v08

 * Make objective clearly, cover tags for both nodes in the schema
 tree and nodes in the data tree.

 * Document clearly which tags can be cached and how applications are
 supposed to resynchronize and pull in any update in section 3.

 * Clarify Instance level tag is not used to guide retrieval
 operations in section 3.

 * Distinguish Instance level tag from Metadata annotation in the
 introduction section.

 * Distinguish Schema Level tag from Instance level tag in the
 introduction section and section 3.

 * Schema Level tag used in xpath query has be clarified in section
 3.

 * Other editorial changes.

 v06 - v07

 * Update use case in section 3 to remove object and subobject
 concept and massive related words.

 * Change the title into Node Tags in YANG Modules.

Wu, et al. Expires 9 January 2024 [Page 28]

Internet-Draft YANG Node Tags July 2023

 * Update Model Tag design in section 5.1 based on Balazs’s comments.

 * Add Instance level tunnel tagging example in the Appendix.

 * Add ’type’ parameter in the base model and add one more model
 extension example in the Appendix.

 * Consolidate opm-tag extension, metric-type extension and multi-
 source-tag extension into one generic yang extension.

 * Remove object tag and property tag.

 * Other Appendix Updates.

 v05 - v06

 * Additional Editorial changes;

 * Use the folding defined in [RFC8792].

 v04 - v05

 * Add user tag formating clarification;

 * Provide guidance to the Designated Expert for evaluation of YANG
 Node Tag registry and YANG Node Tag prefix registry.

 * Update the figure 1 and figure 2 with additional tags.

 * Security section enhancement for user tag managment.

 * Change data node name into name in the module.

 * Other Editorial changes to address Adrian’s comments and comments
 during YANG docotor review.

 * Open issue: Are there any risks associated with an attacker adding
 or removing tags so that a requester gets the wrong data?

 v03 - v04

 * Remove histogram metric type tag from metric type tags.

 * Clarify the object tag and property tag,metric tag are mutual
 exlusive.

 * Clarify to have two optional node tags (i.e.,object tag and
 property tag) to indicate relationship between data nodes.

Wu, et al. Expires 9 January 2024 [Page 29]

Internet-Draft YANG Node Tags July 2023

 * Update targeted data node collection example.

 v02 - v03

 * Additional Editorial changes.

 * Security section enhancement.

 * Nits fixed.

 v01 - v02

 * Clarify the relation between data node, object tag, property tag
 and metric tag in figure 1 and figure 2 and related description;

 * Change Metric Group into Metric Type in the YANG model;

 * Add 5 metric types in section 7.2;

 v00 - v01

 * Merge node tag use case section into introduction section as a
 subsection;

 * Add one glossary section;

 * Clarify the relation between data node, object tag, property tag
 and metric tag in node Tags Use Case section;

 * Add update to RFC8407 in the front page.

Authors’ Addresses

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Benoit Claise
 Huawei
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium
 Email: benoit.claise@huawei.com

Wu, et al. Expires 9 January 2024 [Page 30]

Internet-Draft YANG Node Tags July 2023

 Mohamed Boucadair
 Orange
 35000 Rennes
 France
 Email: mohamed.boucadair@orange.com

 Peng Liu
 China Mobile
 32 Xuanwumen West St, Xicheng District
 Beijing
 Email: liupengyjy@chinamobile.com

 Zongpeng Du
 China Mobile
 32 Xuanwumen West St, Xicheng District
 Beijing
 Email: duzongpeng@chinamobile.com

Wu, et al. Expires 9 January 2024 [Page 31]

NETMOD Q. Ma, Ed.
Internet-Draft Q. Wu
Updates: 8342, 6241, 8526, 8040 (if approved) C. Feng
Intended status: Standards Track Huawei
Expires: 5 January 2024 4 July 2023

 System-defined Configuration
 draft-ietf-netmod-system-config-02

Abstract

 This document describes how a management client and server handle
 YANG-modeled configuration data that is defined by the server itself.
 The system-defined configuration can be referenced (e.g. leafref) by
 configuration explicitly created by a client.

 The Network Management Datastore Architecture (NMDA) defined in RFC
 8342 is updated with a read-only conventional configuration datastore
 called "system" to hold system-defined configuration. As an
 alternative to clients explicitly copying referenced system-defined
 configuration into the target configuration datastore (e.g.,
 <running>) so that the datastore is valid, a "resolve-system"
 parameter is defined to allow the server acting as a "system client"
 to copy referenced system-defined nodes automatically. This solution
 enables clients manipulating the target configuration datastore
 (e.g., <running>) to overlay (e.g., copy system configuration using
 the same key value as in <system>) and reference nodes defined in
 <system>, override values of configurations defined in <system>, and
 configure descendant nodes of system-defined nodes.

 This document updates RFC 8342, RFC 6241, RFC 8526 and RFC 8040.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Ma, et al. Expires 5 January 2024 [Page 1]

Internet-Draft System-defined Configuration July 2023

 This Internet-Draft will expire on 5 January 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Requirements Language 5
 1.3. Updates to RFC 8342 5
 1.4. Updates to RFC 6241 and RFC 8526 6
 1.5. Updates to RFC 8040 6
 1.5.1. Query Parameter 6
 1.5.2. Query Parameter URI 7
 2. Kinds of System Configuration 7
 2.1. Immediately-Active 7
 2.2. Conditionally-Active 8
 2.3. Inactive-Until-Referenced 8
 3. The System Configuration Datastore (<system>) 8
 4. Static Characteristics of <system> 9
 4.1. Read-only to Clients 9
 4.2. May Change via Software Upgrades 9
 4.3. No Impact to <operational> 10
 5. Dynamic Behavior . 10
 5.1. Conceptual Model of Datastores 10
 5.2. Explicit Declaration of System Configuration 12
 5.3. Servers Auto-configuring Referenced System Configuration
 ("resolve-system" parameter) 13
 5.4. Modifying (Overriding) System Configuration 14
 5.5. Examples . 15
 5.5.1. Server Configuring of <running> Automatically 15
 5.5.2. Declaring a System-defined Node in <running>
 Explicitly . 21
 5.5.3. Modifying a System-instantiated Leaf’s Value 24
 5.5.4. Configuring Descendant Nodes of a System-defined
 Node . 26

Ma, et al. Expires 5 January 2024 [Page 2]

Internet-Draft System-defined Configuration July 2023

 6. The "ietf-system-datastore" Module 27
 6.1. Data Model Overview 28
 6.2. Example Usage . 28
 6.3. YANG Module . 29
 7. The "ietf-netconf-resolve-system" Module 30
 7.1. Data Model Overview 31
 7.2. Example Usage . 32
 7.3. YANG Module . 35
 8. IANA Considerations . 37
 8.1. The "IETF XML" Registry 37
 8.2. The "YANG Module Names" Registry 38
 8.3. RESTCONF Capability URN Registry 38
 9. Security Considerations 38
 9.1. Regarding the "ietf-system-datastore" YANG Module 38
 9.2. Regarding the "ietf-netconf-resolve-system" YANG
 Module . 39
 10. Contributors . 39
 Acknowledgements . 40
 References . 40
 Normative References . 40
 Informative References . 41
 Appendix A. Key Use Cases 42
 A.1. Device Powers On . 42
 A.2. Client Commits Configuration 43
 A.3. Operator Installs Card into a Chassis 44
 Appendix B. Changes between Revisions 45
 Appendix C. Open Issues tracking 46
 Authors’ Addresses . 46

1. Introduction

 The Network Management Datastore Architecture (NMDA) [RFC8342]
 defines system configuration as the configuration that is supplied by
 the device itself and appears in <operational> when it is in use
 (Figure 2 in [RFC8342]).

 However, there is a desire to enable a server to better structure and
 expose the system configuration. NETCONF/RESTCONF clients can
 benefit from a standard mechanism to retrieve what system
 configuration is available on a server.

 Some servers allow the NETCONF/RESTCONF client to reference a system-
 defined node which isn’t present in the target datastore (e.g.,
 <running>). The absence of the system configuration in the datastore
 can render the datastore invalid from the perspective of a client or
 offline tools (e.g., missing leafref targets). This document
 describes several approaches to bring the datastore to a valid state
 and ensuing that all referential integrity constraints are satisfied.

Ma, et al. Expires 5 January 2024 [Page 3]

Internet-Draft System-defined Configuration July 2023

 Some servers allow the descendant nodes of system-defined
 configuration to be configured or modified. For example, the system
 configuration may contain an almost empty physical interface, while
 the client needs to be able to add, modify, or remove a number of
 descendant nodes. Some descendant nodes may not be modifiable (e.g.,
 "name" and "type" set by the system).

 This document updates the Network Management Datastore Architecture
 (NMDA) defined in RFC 8342 with a read-only conventional
 configuration datastore called "system" to hold system-defined
 configuration. As an alternative to clients explicitly copying
 referenced system-defined configuration into the target configuration
 datastore (e.g., <running>) so that the datastore is valid, a
 "resolve-system" parameter has been defined to allow the server
 acting as a "system client" to copy referenced system-defined nodes
 automatically. This solution enables clients manipulating the target
 configuration datastore (e.g., <running>) to overlay (e.g., copy
 system configuration using the same key value as in <system>) and
 reference nodes defined in <system>, override values of
 configurations defined in <system>, and configure descendant nodes of
 system-defined nodes.

 If a system-defined node is referenced, it refers to one of the
 following cases throughout this document:

 * It is present in a leafref "path" statement and referred as the
 leafref value

 * It is used as an "instance-identifier" type value

 * It is present in an Xpath expression of "when" or "must"
 constraints

 * It is defined to satisfy the "mandatory" constraints

 * It is defined to exactly satisfy the "min-element" constraints

 Conformance to this document requires the NMDA servers to implement
 the "ietf-system-datastore" YANG module (Section 6).

1.1. Terminology

 This document assumes that the reader is familiar with the contents
 of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and uses
 terminologies from those documents.

 The following terms are defined in this document:

Ma, et al. Expires 5 January 2024 [Page 4]

Internet-Draft System-defined Configuration July 2023

 System configuration: Configuration that is provided by the system
 itself. System configuration is present in the system
 configuration datastore (regardless of being applied by the device
 or referenced by other configuration nodes), and appears in the
 intended configuration datastore. System configuration that is
 considered active (according to the NMDA defined in RFC 8342)
 appears in <operational> with origin="system". It is a different
 and separate concept from factory default configuration defined in
 RFC 8808 (which represents a preset initial configuration that is
 used to initialize the configuration of a server).

 System configuration datastore: A configuration datastore holding
 configuration provided by the system itself. This datastore is
 referred to as "<system>".

 This document redefines the term "conventional configuration
 datastore" in Section 3 of [RFC8342] to add "system" to the list of
 conventional configuration datastores:

 Conventional configuration datastore: One of the following set of
 configuration datastores: <running>, <startup>, <candidate>,
 <system>, and <intended>. These datastores share a common
 datastore schema, and protocol operations allow copying data
 between these datastores. The term "conventional" is chosen as a
 generic umbrella term for these datastores.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Updates to RFC 8342

 This document updates RFC 8342 to define a configuration datastore
 called "system" to hold system configuration, it also redefines the
 term "conventional configuration datastore" from RFC 8342 to add
 "system" to the list of conventional configuration datastores. The
 contents of <system> are read-only to clients but may change
 dynamically. <system> aware client may retrieve all three types of
 system configuration defined in Section 2, reference nodes defined in
 <system>, override values of configurations defined in <system>, and
 configure descendant nodes of system-defined nodes.

Ma, et al. Expires 5 January 2024 [Page 5]

Internet-Draft System-defined Configuration July 2023

 The server will merge <running> and <system> to create <intended>.
 As always, system configuration will appear in <operational> with
 origin="system" when it is in use.

 The system datastore makes system configuration visible to clients in
 order for being referenced or configurable prior to present in
 <operational>.

1.4. Updates to RFC 6241 and RFC 8526

 This document augments <edit-config> and <edit-data> RPC operations
 defined in [RFC6241] and [RFC8526] respectively, with a new
 additional input parameter "resolve-system". The <copy-config> RPC
 operation defined in [RFC6241] is also augmented to support "resolve-
 system" parameter.

 The "resolve-system" parameter is optional and has no value. When it
 is provided and the server detects that there is a reference to a
 system-defined node during the validation, the server will
 automatically copy the referenced system configuration into the
 validated datastore to make the configuration valid without the
 client doing so explicitly. Legacy clients interacting with servers
 that support this parameter don’t see any changes in <edit-
 config>/<edit-data> and <copy-config> behaviors.

 The server’s copy referenced nodes from <system> to the target
 datastore MUST be enforced at the end of the <edit-config>/<edit-
 data> or <copy-config> operations, regardless of which target
 datastore it is.

1.5. Updates to RFC 8040

 This document extends Sections 4.8 and 9.1.1 of [RFC8040] to add a
 new query parameter "resolve-system" and corresponding query
 parameter capability URI.

1.5.1. Query Parameter

 The "resolve-system" parameter controls whether to allow a server
 copy any referenced system-defined configuration automatically
 without the client doing so explicitly. This parameter is only
 allowed with no values carried. If this parameter has any unexpected
 value, then a "400 Bad Request" status-line is returned.

Ma, et al. Expires 5 January 2024 [Page 6]

Internet-Draft System-defined Configuration July 2023

 +----------------+---------+---+
 | Name | Methods | Description |
 +----------------+---------+---+
resolve-system	POST,	resolve any references not resolved by
	PUT	the client and copy referenced
	PATCH	system configuration into <running>
		automatically. This parameter can be
		given in any order.
 +----------------+---------+---+

 Figure 1: RESTCONF "resolve-system" Query Parameter

1.5.2. Query Parameter URI

 To enable a RESTCONF client to discover if the "resolve-system" query
 parameter is supported by the server, the following capability URI is
 defined, which is advertised by the server if supported, using the
 "ietf-restconf-monitoring" module defined in RFC 8040:

 urn:ietf:params:restconf:capability:resolve-system:1.0

 Comment: Should we define a similar capability identifier for NETCONF
 protocol?

2. Kinds of System Configuration

 There are three types of system configurations defined in this
 document: immediately-active system configuration, conditionally-
 active system configuration, and inactive-until-referenced system
 configuration.

 Active system configuration refers to configuration that is in use by
 a device. As per definition of the operational state datastore in
 [RFC8342], if system configuration is inactive, it should not appear
 in <operational>. However, system configuration is present in
 <system> once it is generated, regardless of whether it is active or
 not.

2.1. Immediately-Active

 Immediately-active system configurations are those generated in
 <system> and applied immediately when the device is powered on (e.g.,
 a loopback interface), irrespective of physical resource present or
 not, a special functionality enabled or not.

Ma, et al. Expires 5 January 2024 [Page 7]

Internet-Draft System-defined Configuration July 2023

2.2. Conditionally-Active

 System configurations which are generated in <system> and applied
 based on specific conditions being met in a system, e.g., if a
 physical resource is present (e.g., insert interface card), the
 system will automatically detect it and load pre-provisioned
 configuration; when the physical resource is not present(remove
 interface card), the system configuration will be automatically
 cleared. Another example is when a special functionality is enabled,
 e.g., when a QoS feature is enabled, related QoS policies are
 automatically created by the system.

2.3. Inactive-Until-Referenced

 There are some system configurations predefined (e.g., application
 ids, anti-x signatures, trust anchor certs, etc.) as a convenience
 for the clients, which must be referenced to be active. The clients
 can also define their own configurations for their unique
 requirements. Inactive-until-referenced system configurations are
 generated in <system> immediately when the device is powered on, but
 they are not active until being referenced.

3. The System Configuration Datastore (<system>)

 NMDA servers compliant with this document MUST implement a system
 configuration datastore, and they SHOULD also implement <intended>.

 Following guidelines for defining datastores in the appendix A of
 [RFC8342], this document introduces a new datastore resource named
 ’system’ that represents the system configuration.

 * Name: "system"

 * YANG modules: all

 * YANG nodes: all "config true" data nodes up to the root of the
 tree, generated by the system

 * Management operations: The content of the datastore is set by the
 server in an implementation dependent manner. The content can not
 be changed by management operations via protocols such as NETCONF,
 RESTCONF, but may change itself by upgrades and/or when resource-
 conditions are met. The datastore can be read using the standard
 network management protocols such as NETCONF and RESCTCONF.

Ma, et al. Expires 5 January 2024 [Page 8]

Internet-Draft System-defined Configuration July 2023

 * Origin: This document does not define any new origin identity when
 it interacts with <intended> and flows into <operational>. The
 "system" origin Metadata Annotation [RFC7952] is used to indicate
 the origin of a data item is system.

 * Protocols: YANG-driven management protocols, such as NETCONF and
 RESTCONF.

 * Defining YANG module: "ietf-system-datastore".

 The datastore’s content is defined by the server and read-only to
 clients. Upon the content is created or changed, it will be merged
 into <intended>. Unlike <factory-default> [RFC8808], it MAY change
 dynamically, e.g., depending on factors like device upgrade or
 system-controlled resources change (e.g., HW available). The system
 configuration datastore doesn’t persist across reboots; the contents
 of <system> will be lost upon reboot and recreated by the system with
 the same or changed contents. <factory-reset> RPC operation defined
 in [RFC8808] can reset it to its factory default configuration
 without including configuration generated due to the system update or
 client-enabled functionality.

 The system datastore is defined as a conventional configuration
 datastore and shares a common datastore schema with other
 conventional datastores.

4. Static Characteristics of <system>

4.1. Read-only to Clients

 The system datastore is a read-only configuration datastore (i.e.,
 edits towards <system> directly MUST be denied), though the client
 may be allowed to override the value of a system-initialized data
 node (see Section 5.4).

4.2. May Change via Software Upgrades

 System configuration may change dynamically, e.g., depending on
 factors like device upgrade or if system-controlled resources (e.g.,
 HW available) change. In some implementations, when a QoS feature is
 enabled, QoS-related policies are created by the system.

 If the system configuration gets changed, YANG notifications (e.g.,
 "push-change-update" notification) [RFC6470][RFC8639][RFC8641] can be
 used to notify the client. Any update of the contents in <system>
 will not cause the automatic update of <running>, even if some of the
 system configuration has already been copied into <running>
 explicitly or automatically before the update.

Ma, et al. Expires 5 January 2024 [Page 9]

Internet-Draft System-defined Configuration July 2023

4.3. No Impact to <operational>

 This work intends to have no impact to <operational>. System
 configuration appears in <operational> with "origin=system". This
 document enables a subset of those system generated nodes to be
 defined like configuration, i.e., made visible to clients in order
 for being referenced or configurable prior to present in
 <operational>. "Config false" nodes are out of scope, hence existing
 "config false" nodes are not impacted by this work.

5. Dynamic Behavior

5.1. Conceptual Model of Datastores

 This document introduces a datastore named "system" which is used to
 hold all three types of system configurations defined in Section 2.

 When the device is powered on, immediately-active system
 configuration will be generated in <system> and active immediately,
 but inactive-until-referenced system configuration only becomes
 active if it is referenced by client-defined configuration. While
 conditionally-active system configuration will only be created and
 active if the condition on system resources is met when the device is
 powered on or running.

 All above three types of system configurations will appear in
 <system>. Clients MAY reference nodes defined in <system>, override
 values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes, by copying or writing
 intended configurations into the target configuration datastore
 (e.g., <running>).

 The server will merge <running> and <system> to create <intended>, in
 which process, the data node appears in <running> takes precedence
 over the same node in <system> if the server allows the node to be
 modifiable; additional nodes to a list entry or new list/leaf-list
 entries appear in <running> extends the list entry or the whole list/
 leaf-list defined in <system> if the server allows the list/leaf-list
 to be updated. In addition, the intended configuration datastore
 represents the configuration after all configuration transformation
 to <system> are performed (e.g., system-defined template expansion,
 removal of inactive system configuration). If a server implements
 <intended>, <system> MUST be merged into <intended>.

 As a result, Figure 2 in Section 5 of RFC 8342 is updated with the
 below conceptual model of datastores which incorporates the system
 configuration datastore.

Ma, et al. Expires 5 January 2024 [Page 10]

Internet-Draft System-defined Configuration July 2023

 +-------------+ +-----------+
 | <candidate> | | <startup> |
 | (ct, rw) |<---+ +--->| (ct, rw) |
 +-------------+ | | +-----------+
 | | | |
 +-----------+ | +-----------+ |
 | <system> | +-------->| <running> |<--------+
 | (ct, ro) | | (ct, rw) |
 +-----+-----+ +----+------+
 | |
 +--------+ +------+ // configuration transformations,
 | | // e.g., removal of nodes marked
 | | // as "inactive", expansion of
 | | // templates
 V V
 +------------+
 | <intended> | // subject to validation
 | (ct, ro) |
 +------------+
 | // changes applied, subject to
 | // local factors, e.g., missing
 | // resources, delays
 |
 dynamic |
 configuration | +-------- learned configuration
 datastores -----+ | +-------- default configuration
 | | |
 v v v
 +---------------+
 | <operational> | <-- system state
 | (ct + cf, ro) |
 +---------------+

 ct = config true; cf = config false
 rw = read-write; ro = read-only
 boxes denote named datastores

 Figure 2: Architectural Model of Datastores

 Servers MUST enforce that configuration references in <running> are
 resolved within <running> and ensure that <running> contains any
 referenced system configuration. Clients MUST either explicitly copy
 system-defined nodes into <running> or use the "resolve-system"
 parameter. The server MUST enforce that the referenced system nodes
 configured into <running> by the client is consistent with <system>.
 Note that <system> aware clients know how to discover what nodes
 exist in <system>. How clients unaware of the system datastore can
 find appropriate configurations is beyond the scope of this document.

Ma, et al. Expires 5 January 2024 [Page 11]

Internet-Draft System-defined Configuration July 2023

 No matter how the referenced system configurations are copied into
 <running>, the nodes copied into <running> would always be returned
 after a read of <running>, regardless if the client is <system>
 aware.

 Configuration defined in <system> is merged into <intended>. It is
 also present in <operational> if it is in use by the device, even if
 a client may delete the configuration which is copied from <system>
 into <running>. For example, system initializes a value for a
 particular leaf which is overridden by the client with a different
 value in <running>. The client may delete that node in <running>, in
 which case system-initialized value defined in <system> can be still
 in use and appear in <operational>.

 Applied system configuration regardless of explicitly or
 automatically being copied into <running>, appears in <operational>
 with origin="system".

 Comment: this might need further discussion: should the
 origin="system" be required for system configuration copied/pasted
 into <running>?

 Any deletable system-provided configuration that is placed into
 <running> by the system at boot up, without being part of the
 contents of a <startup> datastore, must be defined in <factory-
 default> [RFC8808], which is used to initialize <running> when the
 device is first-time powered on or reset to its factory default
 condition.

5.2. Explicit Declaration of System Configuration

 It is possible for a client to explicitly declare system
 configuration nodes in the target datastore (e.g., <running>) with
 the same values as in <system>, by configuring a node (list/leaf-list
 entry, leaf, etc.) in the target datastore (e.g., <running>) that
 matches the same node and value in <system>.

 The explicit configuration of system-defined nodes in the target
 datastore (e.g., <running>) can be useful, for example, when the
 client doesn’t want a "system client" to have a role or hasn’t
 implemented the "resolve-system" parameter but need the datastore to
 be valid. The client can explicitly declare (i.e., configure in the
 datastore like <running>) the list entries (with at least the keys)
 for any system configuration list entries that are referenced
 elsewhere in <running>. The client does not necessarily need to
 declare all the contents of the list entry (i.e. the descendant
 nodes) , only the parts that are required to make the datastore
 appear valid.

Ma, et al. Expires 5 January 2024 [Page 12]

Internet-Draft System-defined Configuration July 2023

5.3. Servers Auto-configuring Referenced System Configuration
 ("resolve-system" parameter)

 This document defines a new parameter "resolve-system" to the input
 for the <edit-config>, <edit-data>, and <copy-config> operations.
 Clients that are aware of the "resolve-system" parameter MAY use this
 parameter to avoid the requirement to provide a referentially
 complete configuration in <running>.

 If the "resolve-system" is present, and the server supports this
 capability, the server MUST copy relevant referenced system-defined
 nodes into the target datastore (e.g., <running>) without the client
 doing the copy/paste explicitly, to resolve any references not
 resolved by the client. The server acting as a "system client" like
 any other remote clients copies the referenced system-defined nodes
 when triggered by the "resolve-system" parameter.

 The server may automatically configure the list entries (with at
 least the keys) in the target datastore (e.g., <running>) for any
 system configuration list entries that are referenced elsewhere by
 the clients. Similarly, not all the contents of the list entry
 (i.e., the descendant nodes) are necessarily copied by the server -
 only the parts that are required to make <running> valid.

 There is no distinction between the configuration in the target
 datastore (e.g., <running>) which is automatically configured by the
 server and the one explicitly declared by the client, e.g., a read
 back of the datastore (i.e., <get>, <get-config> or <get-data>
 operation) returns automatically configured nodes. Note that even an
 auto-configured node is allowed to be deleted from the target
 datastore by the client, the operation request (e.g., <edit-config>)
 may not succeed due to incomplete referential integrity, it is also
 possible that the system automatically configures the deleted node
 again to make configuration valid, when a "resolve-system" parameter
 is carried. A referenced system node onced auto-configured in the
 datastore, will not be removed or updated automatically by the server
 even in cases like all references to it are deleted by the client or
 system configuration is no longer present in <system> due to factors
 like device upgrade or system-controlled resources (e.g., HW
 unavailable) change.

 Comment: Should the server update configuration in <running> that is
 copied from <system> automatically (and manually?) during an upgrade?
 Jason: I think maybe servers that convert configuration during
 upgrade (a common approach) would want to convert/upgrade system
 config as well as any copied system config that exists in running.

Ma, et al. Expires 5 January 2024 [Page 13]

Internet-Draft System-defined Configuration July 2023

 If the "resolve-system" parameter is not given by the client, the
 server should not modify <running> in any way otherwise not specified
 by the client. Not using capitalized "SHOULD NOT" in the previous
 sentence is intentional. The intention is to bring awareness to the
 general need to not surprise clients with unexpected changes. It is
 desirable for clients to always opt into using mechanisms having
 server-side changes. This document enables a client to opt into this
 behavior using the "resolve-system" parameter. An example of this
 type of opt-in behavior can also be found in RFC 7317, which enables
 a client to opt into its behavior using a "0" prefix (see
 ianach:crypt-hash type defined in [RFC7317]).

 Support for the "resolve-system" parameter is OPTIONAL. Non-NMDA
 servers MAY also implement this parameter without implementing the
 system configuration datastore, which would only eliminate the
 ability to expose the system configuration via protocol operations.
 If a server implements <system>, referenced system configuration is
 copied from <system> into the target datastore(e.g., <running>) when
 the "resolve-system" parameter is used; otherwise it is an
 implementation decision where to copy referenced system configuration
 into the target datastore (e.g., <running>).

 Comments from Jason: Overall the resolve-system function may mean an
 expensive (time consuming) operation on the server side.
 Conceptually it may mean doing a validation on the running, and then
 when an error is hit, searching the ’system’ datastore for something
 that could resolve that invalid aspect. Then running validation
 again and hitting the next error. It may require multiple passes
 (since some errors are dependent on the previous error being present
 or ’fixed’).

5.4. Modifying (Overriding) System Configuration

 In some cases, a server may allow some parts of system configuration
 to be modified. Modification of system configuration is achieved by
 the client writing configuration to <running> that overrides the
 system configuration. Configurations defined in <running> take
 precedence over system configuration nodes in <system> if the server
 allows the nodes to be modified.

Ma, et al. Expires 5 January 2024 [Page 14]

Internet-Draft System-defined Configuration July 2023

 For instance, list keys in system configuration can’t be changed by a
 client, but other descendant nodes in a list entry may be modifiable
 or non-modifiable. Leafs and leaf-lists outside of lists may also be
 modifiable or non-modifiable. Even if some system configuration has
 been copied into <running> earlier, whether it is modifiable or not
 in <running> follows general YANG constraints and NACM rules, and
 other server-internal restrictions. If a system configuration node
 is non-modifiable, then writing a different value for that node MUST
 return an error. The immutability of system configuration is further
 defined in [I-D.ma-netmod-immutable-flag].

 A server may also allow a client to add data nodes to a list entry in
 <system> by writing those additional nodes in <running>. Those
 additional data nodes may not exist in <system> (i.e., an *addition*
 rather than an override).

 Comment 1: What if <system> contains a set of values for a leaf-list,
 and a client configures another set of values for that leaf-list in
 <running>, will the set of values in <running> completely replace the
 set of values in <system>? Or the two sets of values are merged
 together?

 Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do
 <running> values go before or after, or is this a case where a full-
 replace is needed.

5.5. Examples

 This section shows some examples of server-configuring of <running>
 automatically, declaring a system-defined node in <running>
 explicitly, modifying a system-instantiated leaf’s value and
 configuring descendant nodes of a system-defined node. For each
 example, the corresponding XML snippets are provided.

5.5.1. Server Configuring of <running> Automatically

 In this subsection, the following fictional module is used:

Ma, et al. Expires 5 January 2024 [Page 15]

Internet-Draft System-defined Configuration July 2023

 module example-application {
 yang-version 1.1;
 namespace "urn:example:application";
 prefix "app";

 import ietf-inet-types {
 prefix "inet";
 }
 container applications {
 list application {
 key "name";
 leaf name {
 type string;
 }
 leaf protocol {
 type enumeration {
 enum tcp;
 enum udp;
 }
 }
 leaf destination-port {
 type inet:port-number;
 }
 }
 }
 }

 The server may predefine some applications as a convenience for the
 clients. These predefined configurations are active only after being
 referenced by other configurations, which fall into the "inactive-
 until-referenced" system configuration as defined in Section 2. The
 system-instantiated application entries may be present in <system> as
 follows:

Ma, et al. Expires 5 January 2024 [Page 16]

Internet-Draft System-defined Configuration July 2023

 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>smtp</name>
 <protocol>tcp</protocol>
 <destination-port>25</destination-port>
 </application>
 ...
 </applications>

 The client may also define its customized applications. Suppose the
 configuration of applications is present in <running> as follows:

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

 A fictional ACL YANG module is used as follows, which defines a
 leafref for the leaf-list "application" data node to refer to an
 existing application name.

Ma, et al. Expires 5 January 2024 [Page 17]

Internet-Draft System-defined Configuration July 2023

 module example-acl {
 yang-version 1.1;
 namespace "urn:example:acl";
 prefix "acl";

 import example-application {
 prefix "app";
 }
 import ietf-inet-types {
 prefix "inet";
 }

 container acl {
 list acl_rule {
 key "name";
 leaf name {
 type string;
 }
 container matches {
 choice l3 {
 container ipv4 {
 leaf source_address {
 type inet:ipv4-prefix;
 }
 leaf dest_address {
 type inet:ipv4-prefix;
 }
 }
 }
 choice applications {
 leaf-list application {
 type leafref {
 path "/app:applications/app:application/app:name";
 }
 }
 }
 }
 leaf packet_action {
 type enumeration {
 enum forward;
 enum drop;
 enum redirect;
 }
 }
 }
 }
 }

Ma, et al. Expires 5 January 2024 [Page 18]

Internet-Draft System-defined Configuration July 2023

 If a client configures an ACL rule referencing system predefined
 nodes which are not present in <running>, the client may issue an
 <edit-config> operation with the parameter "resolve-system" as
 follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <dest_address>192.0.2.0/24</dest_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation:

Ma, et al. Expires 5 January 2024 [Page 19]

Internet-Draft System-defined Configuration July 2023

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application or:origin="or:system">
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application or:origin="or:system">
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 5 January 2024 [Page 20]

Internet-Draft System-defined Configuration July 2023

 Since the configuration of application "smtp" is not referenced by
 the client, and the server treats application "smtp" configuration as
 "inactive-until-referenced", it does not appear in <operational> but
 only in <system>.

5.5.2. Declaring a System-defined Node in <running> Explicitly

 It’s also possible for a client to explicitly declare the system-
 defined configurations that are referenced. For instance, in the
 above example, the client MAY also explicitly configure the following
 system defined applications "ftp" and "tftp" only with the list key
 "name" before referencing:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>
 </config>
 </edit-config>
 </rpc>

 Then the client issues an <edit-config> operation to configure an ACL
 rule referencing applications "ftp" and "tftp" without the parameter
 "resolve-system" as follows:

Ma, et al. Expires 5 January 2024 [Page 21]

Internet-Draft System-defined Configuration July 2023

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <dest_address>192.0.2.0/24</dest_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation, all the configuration of applications are explicitly
 configured by the client:

Ma, et al. Expires 5 January 2024 [Page 22]

Internet-Draft System-defined Configuration July 2023

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 <protocol or:origin="or:system">tcp</protocol>
 <destination-port or:origin="or:system">21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol or:origin="or:system">udp</protocol>
 <destination-port or:origin="or:system">69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 5 January 2024 [Page 23]

Internet-Draft System-defined Configuration July 2023

 Since the application names "ftp" and "tftp" are explicitly
 configured by the client, they take precedence over the values in
 <system>, the "origin" attribute will be set to "intended".

5.5.3. Modifying a System-instantiated Leaf’s Value

 In this subsection, we will use this fictional QoS data model:

 module example-qos-policy {
 yang-version 1.1;
 namespace "urn:example:qos";
 prefix "qos";

 container qos-policies {
 list policy {
 key "name";
 leaf name {
 type string;
 }
 list queue {
 key "queue-id";
 leaf queue-id {
 type int32 {
 range "1..32";
 }
 }
 leaf maximum-burst-size {
 type int32 {
 range "0..100";
 }
 }
 }
 }
 }
 }

 Suppose a client creates a qos policy "my-policy" with 4 system
 instantiated queues(1˜4). The configuration of qos-policies is
 present in <system> as follows:

Ma, et al. Expires 5 January 2024 [Page 24]

Internet-Draft System-defined Configuration July 2023

 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>50</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

 A client modifies the value of maximum-burst-size to 55 in queue-id
 1:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 </qos-policies>
 </config>
 </edit-config>
 </rpc>

 Then, the configuration of qos-policies is present in <operational>
 as follows:

Ma, et al. Expires 5 January 2024 [Page 25]

Internet-Draft System-defined Configuration July 2023

 <qos-policies xmlns="urn:example:qos"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

5.5.4. Configuring Descendant Nodes of a System-defined Node

 This subsection also uses the fictional interface YANG module defined
 in Appendix C.3 of [RFC8342]. Suppose the system provides a loopback
 interface (named "lo0") with a default IPv4 address of "127.0.0.1"
 and a default IPv6 address of "::1".

 The configuration of "lo0" interface is present in <system> as
 follows:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 The configuration of "lo0" interface is present in <operational> as
 follows:

Ma, et al. Expires 5 January 2024 [Page 26]

Internet-Draft System-defined Configuration July 2023

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 Later on, the client further configures the description node of a
 "lo0" interface as follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of interface "lo0" is present in <operational>
 as follows:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 <ip-address or:origin="or:system">127.0.0.1</ip-address>
 <ip-address or:origin="or:system">::1</ip-address>
 </interface>
 </interfaces>

6. The "ietf-system-datastore" Module

Ma, et al. Expires 5 January 2024 [Page 27]

Internet-Draft System-defined Configuration July 2023

6.1. Data Model Overview

 This YANG module defines a new YANG identity named "system" that uses
 the "ds:datastore" identity defined in [RFC8342]. A client can
 discover the system configuration datastore support on the server by
 reading the YANG library information from the operational state
 datastore. Note that no new origin identity is defined in this
 document, the "or:system" origin Metadata Annotation [RFC7952] is
 used to indicate the origin of a data item is system. Support for
 the "origin" annotation is identified with the feature "origin"
 defined in [RFC8526].

 The following diagram illustrates the relationship amongst the
 "identity" statements defined in the "ietf-system-datastore" and
 "ietf-datastores" YANG modules:

 Identities:
 +--- datastore
 | +--- conventional
 | | +--- running
 | | +--- candidate
 | | +--- startup
 | | +--- system
 | | +--- intended
 | +--- dynamic
 | +--- operational

 The diagram above uses syntax that is similar to but not defined in
 [RFC8340].

6.2. Example Usage

 This section gives an example of data retrieval from <system>. The
 YANG module used are shown in Appendix C.2 of [RFC8342]. All the
 messages are presented in a protocol-independent manner. JSON is
 used only for its conciseness.

 Suppose the following data is added to <running>:

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3"
 }
 }
 }

Ma, et al. Expires 5 January 2024 [Page 28]

Internet-Draft System-defined Configuration July 2023

 REQUEST (a <get-data> or GET request sent from the NETCONF or
 RESTCONF client):

 Datastore: <system>
 Target:/bgp

 An example of RESTCONF request:

 GET /restconf/ds/system/bgp HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml

 RESPONSE ("local-port" leaf value is supplied by the system):

 {
 "bgp": {
 "peer": {
 "name": "2001:db8::2:3",
 "local-port": "60794"
 }
 }
 }

6.3. YANG Module

 <CODE BEGINS> file "ietf-system-datastore@2023-07-04.yang"

 module ietf-system-datastore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";
 prefix sysds;

 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture(NMDA)";
 }

 organization
 "IETF NETDOD (Network Modeling) Working Group";
 contact
 "WG Web: https://datatracker.ietf.org/wg/netmod/
 WG List: NETMOD WG list <mailto:netmod@ietf.org>

 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>

Ma, et al. Expires 5 January 2024 [Page 29]

Internet-Draft System-defined Configuration July 2023

 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>";
 description
 "This module defines a new YANG identity that uses the
 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2023-07-04 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 identity system {
 base ds:conventional;
 description
 "This read-only datastore contains the configuration
 provided by the system itself.";
 }
 }

 <CODE ENDS>

7. The "ietf-netconf-resolve-system" Module

 This YANG module is optional to implement.

Ma, et al. Expires 5 January 2024 [Page 30]

Internet-Draft System-defined Configuration July 2023

7.1. Data Model Overview

 This YANG module augments NETCONF <edit-config>, <edit-data> and
 <copy-config> operations with a new parameter "resolve-system" in the
 input parameters. If the "resolve-system" parameter is present, the
 server will copy the referenced system configuration into target
 datastore automatically. A NETCONF client can discover the "resolve-
 system" parameter support on the server by checking the YANG library
 information with "ietf-netconf-resolve-system" YANG module included
 from the operational state datastore.

 The following tree diagram [RFC8340] illustrates the "ietf-netconf-
 resolve-system" module:

 module: ietf-netconf-resolve-system
 augment /nc:edit-config/nc:input:
 +---w resolve-system? empty
 augment /nc:copy-config/nc:input:
 +---w resolve-system? empty
 augment /ncds:edit-data/ncds:input:
 +---w resolve-system? empty

 The following tree diagram [RFC8340] illustrates "edit-config",
 "copy-config" and "edit-data" rpcs defined in "ietf-netconf" and
 "ietf-netconf-nmda" respectively, augmented by "ietf-netconf-resolve-
 system" YANG module:

 rpcs:
 +---x edit-config
 | +---w input
 | +---w target
 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | +---w running? empty {writable-running}?
 | +---w default-operation? enumeration
 | +---w test-option? enumeration {validate}?
 | +---w error-option? enumeration
 | +---w (edit-content)
 | | +--:(config)
 | | | +---w config? <anyxml>
 | | +--:(url)
 | | +---w url? inet:uri {url}?
 | +---w resolve-system? empty
 +---x copy-config
 | +---w input
 | +---w target

Ma, et al. Expires 5 January 2024 [Page 31]

Internet-Draft System-defined Configuration July 2023

 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty {writable-running}?
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | +---w url? inet:uri {url}?
 | +---w source
 | | +---w (config-source)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | | +---w url? inet:uri {url}?
 | | +--:(config)
 | | +---w config? <anyxml>
 | +---w resolve-system? empty
 +---x edit-data
 +---w input
 +---w datastore ds:datastore-ref
 +---w default-operation? enumeration
 +---w (edit-content)
 | +--:(config)
 | | +---w config? <anydata>
 | +--:(url)
 | +---w url? inet:uri {nc:url}?
 +---w resolve-system? empty

7.2. Example Usage

 This section gives an example of an <edit-config> request to
 reference system-defined data nodes which are not present in
 <running> with a "resolve-system" parameter. A retrieval of
 <running> to show the auto-copied referenced system configurations
 after the <edit-config> request is also given. The YANG module used
 is shown as follows, leafrefs refer to an existing name and address
 of an interface:

Ma, et al. Expires 5 January 2024 [Page 32]

Internet-Draft System-defined Configuration July 2023

 module example-interface-management {
 yang-version 1.1;
 namespace "urn:example:interfacemgmt";
 prefix "inm";

 container interfaces {
 list interface {
 key name;
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf mtu {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 }
 }
 container default-address {
 leaf ifname {
 type leafref {
 path "../../interfaces/interface/name";
 }
 }
 leaf address {
 type leafref {
 path "../../interfaces/interface[name = current()/../ifname]"
 + "/ip-address";
 }
 }
 }
 }

 Image that the system provides a loopback interface (named "lo0")
 with a predefined MTU value of "1500" and a predefined IP address of
 "127.0.0.1", <system> shows the following configuration of loopback
 interface:

Ma, et al. Expires 5 January 2024 [Page 33]

Internet-Draft System-defined Configuration July 2023

 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <mtu>1500</mtu>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>

 The client sends an <edit-config> operation to add the configuration
 of default-address with a "resolve-system" parameter:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <default-address xmlns="urn:example:interfacemgmt">
 <if-name>lo0</if-name>
 <address>127.0.0.1</address>
 </default-address>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Since the "resolve-system" parameter is provided, the server will
 resolve any leafrefs to system configurations and copy the referenced
 system-defined nodes into <running> automatically with the same value
 (i.e., the name and ip-address data nodes of lo0 interface) in
 <system> at the end of <edit-config> operation constraint
 enforcement. After the processing, a positive response is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Then the client sends a <get-config> operation towards <running>:

Ma, et al. Expires 5 January 2024 [Page 34]

Internet-Draft System-defined Configuration July 2023

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <interfaces xmlns="urn:example:interfacemgmt"/>
 </filter>
 </get-config>
 </rpc>

 Given that the referenced interface "name" and "ip-address" of lo0
 are configured by the server, the following response is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

7.3. YANG Module

 <CODE BEGINS> file "ietf-netconf-resolve-system@2023-07-04.yang"

 module ietf-netconf-resolve-system {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system";
 prefix ncrs;

 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }
 import ietf-netconf-nmda {
 prefix ncds;
 reference
 "RFC 8526: NETCONF Extensions to Support the Network
 Management Datastore Architecture";
 }

Ma, et al. Expires 5 January 2024 [Page 35]

Internet-Draft System-defined Configuration July 2023

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>
 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>";
 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control whether the server
 is allowed to copy referenced system configuration
 automatically without the client doing so explicitly.

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2023-07-04 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 grouping resolve-system-grouping {
 description

Ma, et al. Expires 5 January 2024 [Page 36]

Internet-Draft System-defined Configuration July 2023

 "Define the resolve-system parameter grouping.";
 leaf resolve-system {
 type empty;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }

 augment "/nc:edit-config/nc:input" {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 uses resolve-system-grouping;
 }

 augment "/nc:copy-config/nc:input" {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 uses resolve-system-grouping;
 }

 augment "/ncds:edit-data/ncds:input" {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 uses resolve-system-grouping;
 }
 }

 <CODE ENDS>

8. IANA Considerations

8.1. The "IETF XML" Registry

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

Ma, et al. Expires 5 January 2024 [Page 37]

Internet-Draft System-defined Configuration July 2023

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

8.2. The "YANG Module Names" Registry

 This document registers two module names in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-system-datastore
 prefix: sys
 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore
 maintained by IANA: N
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-netconf-resolve-system
 prefix: ncrs
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 maintained by IANA: N
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8.3. RESTCONF Capability URN Registry

 This document registers a capability in the "RESTCONF Capability
 URNs" registry [RFC8040]:

 Index Capability Identifier

 :resolve-system urn:ietf:params:restconf:capability:resolve-system:1.0

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446].

Ma, et al. Expires 5 January 2024 [Page 38]

Internet-Draft System-defined Configuration July 2023

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and [RFC8526]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241] apply to the new extended RPC operations
 defined in this document.

10. Contributors

 Kent Watsen
 Watsen Networks

 Email: kent+ietf@watsen.net

 Jan Lindblad
 Cisco Systems

 Email: jlindbla@cisco.com

 Chongfeng Xie
 China Telecom
 Beijing
 China

 Email: xiechf@chinatelecom.cn

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Ma, et al. Expires 5 January 2024 [Page 39]

Internet-Draft System-defined Configuration July 2023

Acknowledgements

 The authors would like to thank for following for discussions and
 providing input to this document (ordered by first name): Alex Clemm,
 Andy Bierman, Balazs Lengyel, Juergen Schoenwaelder, Martin
 Bjorklund, Mohamed Boucadair, Robert Wilton and Timothy Carey.

References

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

Ma, et al. Expires 5 January 2024 [Page 40]

Internet-Draft System-defined Configuration July 2023

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Informative References

 [I-D.ma-netmod-immutable-flag]
 Ma, Q., Wu, Q., Lengyel, B., and H. Li, "YANG Extension
 and Metadata Annotation for Immutable Flag", Work in
 Progress, Internet-Draft, draft-ma-netmod-immutable-flag-
 07, 25 May 2023, <https://datatracker.ietf.org/doc/html/
 draft-ma-netmod-immutable-flag-07>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <https://www.rfc-editor.org/info/rfc7317>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Ma, et al. Expires 5 January 2024 [Page 41]

Internet-Draft System-defined Configuration July 2023

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8808] Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for
 Factory Default Settings", RFC 8808, DOI 10.17487/RFC8808,
 August 2020, <https://www.rfc-editor.org/info/rfc8808>.

Appendix A. Key Use Cases

 Following provides three use cases related to system-defined
 configuration lifecycle management. The simple interface data model
 defined in Appendix C.3 of [RFC8342] is used. For each use case,
 snippets of <running>, <system>, <intended> and <operational> are
 shown.

A.1. Device Powers On

 <running>:

 No configuration for "lo0" appears in <running>;

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

Ma, et al. Expires 5 January 2024 [Page 42]

Internet-Draft System-defined Configuration July 2023

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

A.2. Client Commits Configuration

 If a client creates an interface "et-0/0/0" but the interface does
 not physically exist at this point:

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

Ma, et al. Expires 5 January 2024 [Page 43]

Internet-Draft System-defined Configuration July 2023

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

A.3. Operator Installs Card into a Chassis

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <mtu>1500</mtu>
 </interface>
 </interfaces>

Ma, et al. Expires 5 January 2024 [Page 44]

Internet-Draft System-defined Configuration July 2023

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu>1500</mtu>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name or:origin>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu or:origin="or:system">1500</mtu>
 </interface>
 <interface>
 </interfaces>

Appendix B. Changes between Revisions

 v01 - v02

 * Define referenced system configuration

 * better clarify "resolve-system" parameter

 * update Figure 2 in NMDA RFC

 * Editorial changes

 v00 - v01

 * Clarify why client’s explicit copy is not preferred but cannot be
 avoided if resolve-system parameter is not defined

Ma, et al. Expires 5 January 2024 [Page 45]

Internet-Draft System-defined Configuration July 2023

 * Clarify active system configuration

 * Update the timing when the server’s auto copy should be enforced
 if a resolve-system parameter is used

 * Editorial changes

Appendix C. Open Issues tracking

 * Should the "with-origin" parameter be supported for <intended>?

Authors’ Addresses

 Qiufang Ma (editor)
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: maqiufang1@huawei.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Feng Chong
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: frank.fengchong@huawei.com

Ma, et al. Expires 5 January 2024 [Page 46]

Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 6020, 7950, 8407, 8525 (if approved) R. Rahman, Ed.
Intended status: Standards Track Graphiant
Expires: 19 October 2023 B. Lengyel, Ed.
 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 17 April 2023

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-09

Abstract

 This document specifies a new YANG module update procedure that can
 document when non-backwards-compatible changes have occurred during
 the evolution of a YANG module. It extends the YANG import statement
 with a minimum revision suggestion to help document inter-module
 dependencies. It provides guidelines for managing the lifecycle of
 YANG modules and individual schema nodes. It provides a mechanism,
 via the revision label YANG extension, to specify a revision
 identifier for YANG modules and submodules. This document updates
 RFC 7950, RFC 6020, RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 19 October 2023.

Wilton, et al. Expires 19 October 2023 [Page 1]

Internet-Draft Updated YANG Module Revision Handling April 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 5
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 7
 3.1.2. Non-backwards-compatible changes 8
 3.2. non-backwards-compatible extension statement 8
 3.3. Removing revisions from the revision history 8
 3.4. Revision label . 10
 3.4.1. File names . 10
 3.4.2. Revision label scheme extension statement 11
 3.5. Examples for updating the YANG module revision history . 11
 4. Guidance for revision selection on imports 14
 4.1. Recommending a minimum revision for module imports . . . 15
 4.1.1. Module import examples 16
 5. Updates to ietf-yang-library 17
 5.1. Resolving ambiguous module imports 18
 5.2. YANG library versioning augmentations 18
 5.2.1. Advertising revision-label 19
 5.2.2. Reporting how deprecated and obsolete nodes are
 handled . 19
 6. Versioning of YANG instance data 19
 7. Guidelines for using the YANG module update rules 20
 7.1. Guidelines for YANG module authors 20
 7.1.1. Making non-backwards-compatible changes to a YANG
 module . 21
 7.2. Versioning Considerations for Clients 22
 8. Module Versioning Extension YANG Modules 22
 9. Security considerations 31
 9.1. Security considerations for module revisions 31

Wilton, et al. Expires 19 October 2023 [Page 2]

Internet-Draft Updated YANG Module Revision Handling April 2023

 9.2. Security considerations for the modules defined in this
 document . 32
 10. IANA Considerations . 33
 10.1. YANG Module Registrations 33
 10.2. Guidance for versioning in IANA maintained YANG
 modules . 34
 11. References . 35
 11.1. Normative References 35
 11.2. Informative References 36
 Appendix A. Examples of changes that are NBC 38
 Appendix B. Examples of applying the NBC change guidelines . . . 38
 B.1. Removing a data node 38
 B.2. Changing the type of a leaf node 39
 B.3. Reducing the range of a leaf node 39
 B.4. Changing the key of a list 40
 B.5. Renaming a node . 40
 Contributors . 41
 Acknowledgments . 41
 Authors’ Addresses . 42

1. Introduction

 The current YANG [RFC7950] module update rules require that updates
 of YANG modules preserve strict backwards compatibility. This has
 caused problems as described in
 [I-D.ietf-netmod-yang-versioning-reqs]. This document recognizes the
 need to sometimes allow YANG modules to evolve with non-backwards-
 compatible changes, which can cause breakage to clients and importing
 YANG modules. Accepting that non-backwards-compatible changes do
 sometimes occur, it is important to have mechanisms to report when
 these changes occur, and to manage their effect on clients and the
 broader YANG ecosystem.

 This document defines a flexible versioning solution. Several other
 documents build on this solution with additional capabilities.
 [I-D.ietf-netmod-yang-schema-comparison] specifies an algorithm that
 can be used to compare two revisions of a YANG schema and provide
 granular information to allow module users to determine if they are
 impacted by changes between the revisions. The
 [I-D.ietf-netmod-yang-semver] document extends the module versioning
 work by introducing a revision label scheme based on semantic
 versioning. YANG packages [I-D.ietf-netmod-yang-packages] provides a
 mechanism to group sets of related YANG modules together in order to
 manage schema and conformance of YANG modules as a cohesive set
 instead of individually. Finally,
 [I-D.ietf-netmod-yang-ver-selection] provides a schema selection
 mechanism that allows a client to choose which schemas to use when
 interacting with a server from the available schema that are

Wilton, et al. Expires 19 October 2023 [Page 3]

Internet-Draft Updated YANG Module Revision Handling April 2023

 supported and advertised by the server. These other documents are
 mentioned here as informative references. Support of the other
 documents is not required in an implementation in order to take
 advantage of the mechanisms and functionality offered by this module
 versioning document.

 The document comprises five parts:

 * Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes, and an optional
 revision label.

 * Updated guidance for revision selection on imports and a YANG
 extension statement allowing YANG module imports to document an
 earliest module revision that may satisfy the import dependency.

 * Updates and augmentations to ietf-yang-library to include the
 revision label in the module and submodule descriptions, to report
 how "deprecated" and "obsolete" nodes are handled by a server, and
 to clarify how module imports are resolved when multiple revisions
 could otherwise be chosen.

 * Considerations of how versioning applies to YANG instance data.

 * Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/
 issues.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11 and [RFC6020] section 10.
 Section 3 describes modifications to YANG revision handling and
 update rules, and Section 4.1 describes a YANG extension statement to
 describe potential YANG import revision dependencies.

 This document updates [RFC7950] section 5.2, [RFC6020] section 5.2
 and [RFC8407] section 3.2. Section 3.4.1 describes the use of a
 revision label in the name of a file containing a YANG module or
 submodule.

 This document updates [RFC7950] section 5.6.5 and [RFC8525].
 Section 5.1 defines how a client of a YANG library datastore schema
 resolves ambiguous imports for modules which are not "import-only".

Wilton, et al. Expires 19 October 2023 [Page 4]

Internet-Draft Updated YANG Module Revision Handling April 2023

 This document updates [RFC8407] section 4.7. Section 7 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

 This document updates [RFC8525] with augmentations to include
 revision labels in the YANG library data and two boolean leafs to
 indicate whether status deprecated and status obsolete schema nodes
 are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document makes use of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 In addition, this document uses the following terminology:

 * YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

 * Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 * Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
 revision history for a YANG module or submodule is strictly linear,
 i.e., it is prohibited to have two independent revisions of a YANG
 module or submodule that are both directly derived from the same
 parent revision.

 This document clarifies [RFC7950] and [RFC6020] to explicitly allow
 non-linear development of YANG module and submodule revisions, so
 that they MAY have multiple revisions that directly derive from the
 same parent revision. As per [RFC7950] and [RFC6020], YANG module

Wilton, et al. Expires 19 October 2023 [Page 5]

Internet-Draft Updated YANG Module Revision Handling April 2023

 and submodule revisions continue to be uniquely identified by their
 revision date, and hence all revisions of a given module or submodule
 MUST have unique revision dates.

 For a given YANG module revision, revision B is defined as being
 derived from revision A, if revision A is listed in the revision
 history of revision B. Although this document allows for a branched
 revision history, a given YANG module revision history does not
 contain all revisions in all possible branches, it only lists those
 from which is was derived, i.e., the module revision’s history
 describes a single path of derived revisions back to the root of the
 module’s revision history.

 A corollary to the text above is that the ancestry (derived
 relationship) between two module or submodule revisions cannot be
 determined by comparing the module or submodule revision date or
 label alone - the revision history must be consulted.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
 MAY be used to specify the exact submodule revisions used when the
 submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 and [RFC6020] section 10 require that all
 updates to a YANG module are BC to the previous revision of the
 module. This document introduces a method to indicate that an NBC
 change has occurred between module revisions: this is done by using a
 new "non-backwards-compatible" YANG extension statement in the module
 revision history.

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 and [RFC6020] section 10 to
 refine the rules for permissible changes when a new YANG module
 revision is created.

Wilton, et al. Expires 19 October 2023 [Page 6]

Internet-Draft Updated YANG Module Revision Handling April 2023

 A new module revision MAY contain NBC changes, e.g., the semantics of
 an existing data-node definition MAY be changed in an NBC manner
 without requiring a new data-node definition with a new identifier.
 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

 Note that NBC changes often create problems for clients, thus it is
 recommended to avoid making them.

 As per [RFC7950] and [RFC6020], all published revisions of a module
 are given a new unique revision date. This applies even for module
 revisions containing (in the module or included submodules) only
 changes to any whitespace, formatting, comments or line endings
 (e.g., DOS vs UNIX).

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11 and [RFC6020] section 10, updated
 by the following rules:

 * A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is a non-backwards-compatible change.

 * YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and the removal is classified as a
 backwards-compatible change. In some circumstances it may be
 helpful to retain the obsolete definitions since their identifiers
 may still be referenced by other modules and to ensure that their
 identifiers are not reused with a different meaning.

 * A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

 * Any change made to the "revision-date" or "recommended-min"
 substatements of an "import" statement, including adding new
 "revision-date" or "recommended-min" substatements, changing the
 argument of any "revision-date" or "recommended-min"
 substatetements, or removing any "revision-date" or "recommended-
 min" substatements, is classified as backwards-compatible.

Wilton, et al. Expires 19 October 2023 [Page 7]

Internet-Draft Updated YANG Module Revision Handling April 2023

 * Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards-
 compatible.

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

3.2. non-backwards-compatible extension statement

 The "rev:non-backwards-compatible" extension statement is used to
 indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible" extension statement MUST be added as a
 substatement to the "revision" statement.

 Adding, modifying or removing a "rev:non-backwards-compatible"
 extension statement is considered to be a BC change.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desirable for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule. Doing so can
 lead to import breakages when import by recommended-min is used.
 Moreover, truncating history may cause loss of visibility of when
 non-backwards-compatible changes were introduced.

 An author MAY remove a contiguous sequence of entries from the end
 (i.e., oldest entries) of the revision history. This is acceptable
 even if the first remaining (oldest) revision entry in the revision
 history contains a rev:non-backwards-compatible substatement.

 An author MAY remove a contiguous sequence of entries in the revision
 history as long as the presence or absence of any existing rev:non-
 backwards-compatible substatements on all remaining entries still
 accurately reflect the compatibility relationship to their preceding
 entries remaining in the revision history.

Wilton, et al. Expires 19 October 2023 [Page 8]

Internet-Draft Updated YANG Module Revision Handling April 2023

 The author MUST NOT remove the first (i.e., newest) revision entry in
 the revision history.

 Example revision history:

 revision 2020-11-11 {
 rev:label 4.0.0;
 rev:non-backwards-compatible;
 }

 revision 2020-08-09 {
 rev:label 3.0.0;
 rev:non-backwards-compatible;
 }

 revision 2020-06-07 {
 rev:label 2.1.0;
 }

 revision 2020-02-10 {
 rev:label 2.0.0;
 rev:non-backwards-compatible;
 }

 revision 2019-10-21 {
 rev:label 1.1.3;
 }

 revision 2019-03-04 {
 rev:label 1.1.2;
 }

 revision 2019-01-02 {
 rev:label 1.1.1;
 }

 In the revision history example above, removing the revision history
 entry for 2020-02-10 would also remove the rev:non-backwards-
 compatible annotation and hence the resulting revision history would
 incorrectly indicate that revision 2020-06-07 is backwards-compatible
 with revisions 2019-01-02 through 2019-10-21 when it is not, and so
 this change cannot be made. Conversely, removing one or more
 revisions out of 2019-03-04, 2019-10-21 and 2020-08-09 from the
 revision history would still retain a consistent revision history,
 and is acceptable, subject to an awareness of the concerns raised in
 the first paragraph of this section.

Wilton, et al. Expires 19 October 2023 [Page 9]

Internet-Draft Updated YANG Module Revision Handling April 2023

3.4. Revision label

 Each revision entry in a module or submodule MAY have a revision
 label associated with it, providing an alternative alias to identify
 a particular revision of a module or submodule. The revision label
 could be used to provide an additional versioning identifier
 associated with the revision.

 A revision label scheme is a set of rules describing how a particular
 type of revision label operates for versioning YANG modules and
 submodules. For example, YANG Semver [I-D.ietf-netmod-yang-semver]
 defines a revision label scheme based on Semver 2.0.0 [semver].
 Other documents may define other YANG revision label schemes.

 Submodules MAY use a revision label scheme. When they use a revision
 label scheme, submodules MAY use a revision label scheme that is
 different from the one used in the including module.

 The revision label space of submodules is separate from the revision
 label space of the including module. A change in one submodule MUST
 result in a new revision label of that submodule and the including
 module, but the actual values of the revision labels in the module
 and submodule could be completely different. A change in one
 submodule does not result in a new revision label in another
 submodule. A change in a module revision label does not necessarily
 mean a change to the revision label in all included submodules.

 If a revision has an associated revision label, then it may be used
 instead of the revision date in a "rev:recommended-min" extension
 statement argument.

 A specific revision label identifies a specific revision of the
 module. If two YANG modules contain the same module name and the
 same revision label (and hence also the same revision-date) in their
 latest revision statement, then the file contents of the two modules,
 including the revision history, MUST be identical.

3.4.1. File names

 This section updates [RFC7950] section 5.2, [RFC6020] section 5.2 and
 [RFC8407] section 3.2

 If a revision has an associated revision label, then it is
 RECOMMENDED that the name of the file for that revision be of the
 form:

Wilton, et al. Expires 19 October 2023 [Page 10]

Internet-Draft Updated YANG Module Revision Handling April 2023

 module-or-submodule-name [’#’ revision-label] (’.yang’ / ’.yin’)

 E.g., acme-router-module#2.0.3.yang

 YANG module (or submodule) files may be identified using either the
 revision-date (as per [RFC8407] section 3.2) or the revision label.

3.4.2. Revision label scheme extension statement

 The optional "rev:revision-label-scheme" extension statement is used
 to indicate which revision label scheme a module or submodule uses.
 There MUST NOT be more than one revision label scheme in a module or
 submodule. The mandatory argument to this extension statement:

 * specifies the revision label scheme used by the module or
 submodule

 * is defined in the document which specifies the revision label
 scheme

 * MUST be an identity derived from "revision-label-scheme-base".

 The revision label scheme used by a module or submodule SHOULD NOT
 change during the lifetime of the module or submodule. If the
 revision label scheme used by a module or submodule is changed to a
 new scheme, then all revision label statements that do not conform to
 the new scheme MUST be replaced or removed.

3.5. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how the branched revision history, "non-backwards-compatible"
 extension statement, and revision "label" extension statement could
 be used:

 Example YANG module with branched revision history.

Wilton, et al. Expires 19 October 2023 [Page 11]

Internet-Draft Updated YANG Module Revision Handling April 2023

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

 Example module, revision 2019-06-01:

Wilton, et al. Expires 19 October 2023 [Page 12]

Internet-Draft Updated YANG Module Revision Handling April 2023

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-06-01 {
 rev:label 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 rev:label 3.0.0;
 rev:non-backwards-compatible;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 rev:label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

 Example module, revision 2019-05-01:

Wilton, et al. Expires 19 October 2023 [Page 13]

Internet-Draft Updated YANG Module Revision Handling April 2023

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-05-01 {
 rev:label 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 rev:label 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 rev:label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Guidance for revision selection on imports

 [RFC7950] and [RFC6020] allow YANG module "import" statements to
 optionally require the imported module to have a specific revision
 date. In practice, importing a module with an exact revision date
 can be too restrictive because it requires the importing module to be
 updated whenever any change to the imported module occurs, and hence
 section Section 7.1 suggests that authors do not restrict YANG module
 imports to exact revision dates.

Wilton, et al. Expires 19 October 2023 [Page 14]

Internet-Draft Updated YANG Module Revision Handling April 2023

 Instead, for conformance purposes (section 5.6 of [RFC7950]), the
 recommended approach for defining the relationship between specific
 YANG module revisions is to specify the relationships outside of the
 YANG modules, e.g., via YANG library [RFC8525], YANG packages
 [I-D.ietf-netmod-yang-packages], a filesystem directory containing a
 set of consistent YANG module revisions, or a revision control system
 commit label.

4.1. Recommending a minimum revision for module imports

 Although the previous section indicates that the actual relationship
 constraints between different revisions of YANG modules should be
 specified outside of the modules, in some scenarios YANG modules are
 designed to be loosely coupled, and implementors may wish to select
 sets of YANG module revisions that are expected to work together.
 For these cases it can be helpful for a module author to provide
 guidance on a recommended minimum revision that is expected to
 satisfy an YANG import. E.g., the module author may know of a
 dependency on a type or grouping that has been introduced in a
 particular imported YANG module revision. Although there can be no
 guarantee that all derived future revisions from the particular
 imported module will necessarily also be compatible, older revisions
 of the particular imported module are very unlikely to ever be
 compatible.

 This document introduces a new YANG extension statement to provide
 guidance to module implementors on a recommended minimum module
 revision of an imported module that is anticipated to be compatible.
 This statement has been designed to be machine-readable so that tools
 can parse the minimum revision extension statement and generate
 warnings if appropriate, but this extension statement does not alter
 YANG module conformance of valid YANG module versions in any way, and
 specifically it does not alter the behavior of the YANG module import
 statement from that specified in [RFC7950].

 The ietf-revisions module defines the "recommended-min" extension
 statement, a substatement to the YANG "import" statement, to allow
 for a "minimum recommended revision" to be documented:

 The argument to the "recommended-min" extension statement is a
 revision date or a revision label.

Wilton, et al. Expires 19 October 2023 [Page 15]

Internet-Draft Updated YANG Module Revision Handling April 2023

 A particular revision of an imported module adheres to an import’s
 "recommended-min" extension statement if the imported module’s
 revision history contains a revision statement with a matching
 revision date or revision label. Removing entries from a module’s
 revision history may cause a particular revision to no longer
 satisfy an import’s "recommended-min" statement if the revision-
 date or label is no longer present in the module’s revision
 history; further described in Section 3.3 and Section 7.1.

 The "recommended-min" extension statement MAY be specified
 multiple times, allowing a set of recommended minimum revisions to
 be documented. Module implementors are recommended to pick a
 module revision that adheres to any of the "recommended-min"
 statements.

 Adding, modifying or removing a "recommended-min" extension
 statement is a BC change.

4.1.1. Module import examples

 Consider the example module "example-module" from Section 3.5 that is
 hypothetically available in the following revision/label pairings:
 2019-01-01/1.0.0, 2019-02-01/2.0.0, 2019-03-01/3.0.0,
 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0. The
 relationship between the revisions is as before:

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

4.1.1.1. Example 1

 This example recommends module revisions for import that match, or
 are derived from the revision 2019-02-01. E.g., this dependency
 might be used if there was a new container added in revision
 2019-02-01 that is augmented by the importing module. It includes
 revisions/labels: 2019-02-01/2.0.0, 2019-03-01/3.0.0,
 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0.

Wilton, et al. Expires 19 October 2023 [Page 16]

Internet-Draft Updated YANG Module Revision Handling April 2023

 import example-module {
 rev:recommended-min 2019-02-01;
 }

 Alternatively, the first example could have used the revision label
 "2.0.0" instead, which selects the same set of revisions/labels.

 import example-module {
 rev:recommended-min 2.0.0;
 }

4.1.1.2. Example 2

 This example recommends module revisions for import that are derived
 from 2019-04-01 by using the revision label 2.1.0. It includes
 revisions/labels: 2019-04-01/2.1.0 and 2019-05-01/2.2.0. Even though
 2019-06-01/3.1.0 has a higher revision label number than
 2019-04-01/2.1.0 it is not a derived revision, and hence it is not a
 recommended revision for import.

 import example-module {
 rev:recommended-min 2.1.0;
 }

4.1.1.3. Example 3

 This example recommends module revisions for import that are derived
 from either 2019-04-01 or 2019-06-01. It includes revisions/labels:
 2019-04-01/2.1.0, 2019-05-01/2.2.0, and 2019-06-01/3.1.0.

 import example-module {
 rev:recommended-min 2019-04-01;
 rev:recommended-min 2019-06-01;
 }

5. Updates to ietf-yang-library

 This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
 to clarify how ambiguous module imports are resolved. It also
 defines the YANG module, ietf-yang-library-revisions, that augments
 YANG library [RFC8525] with revision labels and two leafs to indicate
 how a server implements deprecated and obsolete schema nodes.

Wilton, et al. Expires 19 October 2023 [Page 17]

Internet-Draft Updated YANG Module Revision Handling April 2023

5.1. Resolving ambiguous module imports

 A YANG datastore schema, defined in [RFC8525], can specify multiple
 revisions of a YANG module in the schema using the "import-only"
 list, with the requirement from [RFC7950] section 5.6.5 that only a
 single revision of a YANG module may be implemented.

 If a YANG module import statement does not specify a specific
 revision within the datastore schema then it could be ambiguous as to
 which module revision the import statement should resolve to. Hence,
 a datastore schema constructed by a client using the information
 contained in YANG library may not exactly match the datastore schema
 actually used by the server.

 The following two rules remove the ambiguity:

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and one of those revisions
 is implemented (i.e., not an "import-only" module), then the import
 statement MUST resolve to the revision of the module that is defined
 as being implemented by the datastore schema.

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and none of those revisions
 are implemented, then the import MUST resolve to the module revision
 with the latest revision date.

5.2. YANG library versioning augmentations

 The "ietf-yang-library-revisions" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-revisions
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

Wilton, et al. Expires 19 October 2023 [Page 18]

Internet-Draft Updated YANG Module Revision Handling April 2023

5.2.1. Advertising revision-label

 The ietf-yang-library-revisions YANG module augments the "module" and
 "submodule" lists in ietf-yang-library with "revision-label" leafs to
 optionally declare the revision label associated with each module and
 submodule.

5.2.2. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-library-revisions YANG module augments YANG library
 with two boolean leafs to allow a server to report how it implements
 status "deprecated" and status "obsolete" schema nodes. The leafs
 are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates
 that all schema nodes with a status "deprecated" are implemented
 equivalently as if they had status "current"; otherwise deviations
 MUST be used to explicitly remove "deprecated" nodes from the
 schema. If this leaf is set to "false" or absent, then the
 behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" schema nodes.
 If this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leafs to "true".

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible" statements to determine whether two module revisions are
 backwards-compatible, and MUST also consider whether the status of
 any nodes has changed to "deprecated" and whether those nodes are
 implemented by the server.

6. Versioning of YANG instance data

 Instance data sets [RFC9195] do not directly make use of the updated
 revision handling rules described in this document, as compatibility
 for instance data is undefined.

 However, instance data specifies the content-schema of the data-set.
 This schema SHOULD make use of versioning using revision dates and/or
 revision labels for the individual YANG modules that comprise the
 schema or potentially for the entire schema itself (e.g.,
 [I-D.ietf-netmod-yang-packages]).

Wilton, et al. Expires 19 October 2023 [Page 19]

Internet-Draft Updated YANG Module Revision Handling April 2023

 In this way, the versioning of a content-schema associated with an
 instance data set may help a client to determine whether the instance
 data could also be used in conjunction with other revisions of the
 YANG schema, or other revisions of the modules that define the
 schema.

7. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

7.1. Guidelines for YANG module authors

 All IETF YANG modules MUST include revision label statements for all
 newly published YANG modules, and all newly published revisions of
 existing YANG modules. The revision label MUST take the form of a
 YANG semantic version number [I-D.ietf-netmod-yang-semver].

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors SHOULD
 minimize NBC changes and keep changes BC whenever possible.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible" statement MUST be added if there are
 NBC changes relative to the previous revision.

 Removing old revision statements from a module’s revision history
 could break import by revision, and hence it is RECOMMENDED to retain
 them. If all dependencies have been updated to not import specific
 revisions of a module, then the corresponding revision statements can
 be removed from that module. An alternative solution, if the
 revision section is too long, would be to remove, or curtail, the
 older description statements associated with the previous revisions.

 The "rev:recommended-min" extension MAY be used in YANG module
 imports to indicate revision dependencies between modules in
 preference to the "revision-date" statement, which causes overly
 strict import dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed.

Wilton, et al. Expires 19 October 2023 [Page 20]

Internet-Draft Updated YANG Module Revision Handling April 2023

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 * A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

7.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are some guidelines on how non-
 backwards-compatible changes can be made incrementally, with the
 assumption that deprecated nodes are implemented by the server, and
 obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated". At some point in the future, when support
 is removed for the data node, there are two options. The first,
 and preferred, option is to keep the data node definition in the
 model and change the status to "obsolete". The second option is
 to simply remove the data node from the model, but this has the
 risk of breaking modules which import the modified module, and
 the removed identifier may be accidently reused in a future
 revision.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

Wilton, et al. Expires 19 October 2023 [Page 21]

Internet-Draft Updated YANG Module Revision Handling April 2023

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due
 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

 See Appendix B for examples on how NBC changes can be made.

7.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 * Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 * Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 * Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

8. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,
 revision label, revision label scheme, and importing by revision.

Wilton, et al. Expires 19 October 2023 [Page 22]

Internet-Draft Updated YANG Module Revision Handling April 2023

 <CODE BEGINS> file "ietf-yang-revisions@2022-11-29.yang"
 module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2002 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

Wilton, et al. Expires 19 October 2023 [Page 23]

Internet-Draft Updated YANG Module Revision Handling April 2023

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

 revision 2022-11-29 {
 rev:label "1.0.0-draft-ietf-netmod-yang-module-versioning-08";
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 typedef revision-date {
 type string {
 pattern ’[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])’;
 }
 description
 "A date associated with a YANG revision.

 Matches dates formatted as YYYY-MM-DD.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language";
 }

 typedef revision-label {
 type string {
 length "1..255";
 pattern ’[a-zA-Z0-9,\-_.+]+’;
 pattern ’[0-9]{4}-[0-9]{2}-[0-9]{2}’ {
 modifier "invert-match";
 error-message
 "The revision-label must not match a revision-date.";
 }
 }
 description
 "A label associated with a YANG revision.

 Alphanumeric characters, comma, hyphen, underscore, period
 and plus are the only accepted characters. MUST NOT match
 revision-date or pattern similar to a date.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 typedef revision-date-or-label {
 type union {

Wilton, et al. Expires 19 October 2023 [Page 24]

Internet-Draft Updated YANG Module Revision Handling April 2023

 type revision-date;
 type revision-label;
 }
 description
 "Represents either a YANG revision date or a revision label";
 }

 extension non-backwards-compatible {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the backwards-compatible module update rules
 defined in RFC-XXX, then the ’non-backwards-compatible’
 statement MUST be added as a substatement to the revision
 statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,
 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards-compatible SHOULD NOT include the
 ’non-backwards-compatible’ statement. An example of when an
 author might add the ’non-backwards-compatible’ statement is
 if they believe a change could negatively impact clients even
 though the backwards compatibility rules defined in RFC-XXXX
 classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2,
 non-backwards-compatible revision extension statement";
 }

 extension label {
 argument revision-label;
 description

Wilton, et al. Expires 19 October 2023 [Page 25]

Internet-Draft Updated YANG Module Revision Handling April 2023

 "The revision label can be used to provide an additional
 versioning identifier associated with a module or submodule
 revision. One such scheme that could be used is [XXXX:
 ietf-netmod-yang-semver].

 The format of the revision label argument MUST conform to the
 pattern defined for the revision label typedef in this module.

 The statement MUST only be a substatement of the revision
 statement. Zero or one revision label statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Revision labels MUST be unique amongst all revisions of a
 module or submodule.

 Adding a revision label is a backwards-compatible version
 change. Changing or removing an existing revision label in
 the revision history is a non-backwards-compatible version
 change, because it could impact any references to that
 revision label.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 extension revision-label-scheme {
 argument revision-label-scheme-base;
 description
 "The revision label scheme specifies which revision label
 scheme the module or submodule uses.

 The mandatory revision-label-scheme-base argument MUST be an
 identity derived from revision-label-scheme-base.

 This extension is only valid as a top-level statement, i.e.,
 given as as a substatement to ’module’ or ’submodule’. No
 substatements for this extension have been standardized.

 This extension MUST be used if there is a revision label
 statement in the module or submodule.

 Adding a revision label scheme is a backwards-compatible
 version change. Changing a revision label scheme is a
 non-backwards-compatible version change, unless the new
 revision label scheme is backwards-compatible with the
 replaced revision label scheme. Removing a revision label
 scheme is a non-backwards-compatible version change.";

Wilton, et al. Expires 19 October 2023 [Page 26]

Internet-Draft Updated YANG Module Revision Handling April 2023

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }

 extension recommended-min {
 argument revision-date-or-label;
 description
 "Recommends the revision of the module that may be imported to
 one that matches or is derived from the specified
 revision-date or revision label.

 The argument value MUST conform to the
 ’revision-date-or-label’ defined type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’recommended-min’ statements per
 parent statement are allowed. No substatements for this
 extension have been standardized.

 If specified multiple times, then any module revision that
 satisfies at least one of the ’recommended-min’ statements is
 an acceptable recommended revision for import.

 A particular revision of an imported module adheres to an
 import’s ’recommended-min’ extension statement if the imported
 module’s revision history contains a revision statement with a
 matching revision date or revision label.

 Adding, removing or updating a ’recommended-min’ statement to
 an import is a backwards-compatible change.";
 reference
 "XXXX: Updated YANG Module Revision Handling; Section 4,
 Recommending a minimum revision for module imports";
 }

 identity revision-label-scheme-base {
 description
 "Base identity from which all revision label schemes are
 derived.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }
 }
 <CODE ENDS>

 YANG module with augmentations to YANG Library to revision labels

Wilton, et al. Expires 19 October 2023 [Page 27]

Internet-Draft Updated YANG Module Revision Handling April 2023

 <CODE BEGINS> file "ietf-yang-library-revisions@2021-11-04.yang"
 module ietf-yang-library-revisions {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions";
 prefix yl-rev;

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }
 import ietf-yang-library {
 prefix yanglib;
 reference
 "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 level revision label and to provide an indication of how
 deprecated and obsolete nodes are handled by the server.

 Copyright (c) 2002 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to

Wilton, et al. Expires 19 October 2023 [Page 28]

Internet-Draft Updated YANG Module Revision Handling April 2023

 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace label version with 1.0.0 and
 // remove this note.

 revision 2021-11-04 {
 rev:label "1.0.0-draft-ietf-netmod-yang-module-versioning-05";
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 // library 1.0 modules-state is not augmented with revision-label

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the revision label value in the
 specific revision of the module loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment
 "/yanglib:yang-library/yanglib:module-set/yanglib:module/"

Wilton, et al. Expires 19 October 2023 [Page 29]

Internet-Draft Updated YANG Module Revision Handling April 2023

 + "yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the revision label value in the
 specific revision of the submodule included by the module
 loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the revision label value in the
 specific revision of the module included in this
 module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:label value in the specific
 revision of the submodule included by the import-only-module
 loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }

Wilton, et al. Expires 19 October 2023 [Page 30]

Internet-Draft Updated YANG Module Revision Handling April 2023

 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled for each datastore
 schema supported by the server.";
 leaf deprecated-nodes-implemented {
 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes
 with a status ’deprecated’ are implemented equivalently as
 if they had status ’current’; otherwise deviations MUST be
 used to explicitly remove deprecated nodes from the schema.
 If this leaf is absent or set to false, then the behavior is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }
 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ schema nodes. If this leaf
 is absent or set to false, then the behaviour is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling; Section 5.2.2,
 Reporting how deprecated and obsolete nodes are handled";
 }
 }
 }
 <CODE ENDS>

9. Security considerations

9.1. Security considerations for module revisions

 As discussed in the introduction of this document, YANG modules
 occasionally undergo changes that are not backwards compatible. This
 occurs in both standards and vendor YANG modules despite the
 prohibitions in RFC 7950. RFC 7950 also allows nodes to change to
 status ’obsolete’ which can change behavior and compatibility for a
 client.

Wilton, et al. Expires 19 October 2023 [Page 31]

Internet-Draft Updated YANG Module Revision Handling April 2023

 The fact that YANG modules change in a non-backwards-compatible
 manner may have security implications. Such changes should be
 carefully considered, including the scenarios described below. The
 rev:non-backwards-compatible extension statement introduced in this
 document provides an alert that the module or submodule may contain
 changes that impact users and need to be examined more closely for
 both compatibility and potential security implications. Flagging the
 change reduces the risk of introducing silent exploitable
 vulnerabilities.

 When a module undergoes a non-backwards-compatible change, a server
 may implement different semantics for a given leaf than a client
 using an older version of the module is expecting. If the particular
 leaf controls any security functions of the device, or is related to
 parts of the configuration or state that are sensitive from a
 security point of view, then the difference in behavior between the
 old and new revisions needs to be considered carefully. In
 particular, changes to the default of the leaf should be examined.

 Implementors and users should also consider impact to data node
 access control rules (e.g. The Network Configuration Access Control
 Model (NACM) [RFC8341]) in the face of non-backwards-compatible
 changes. Access rules may need to be adjusted when a new module
 revision is introduced that contains a non-backwards-compatible
 change.

 If the changes to a module or submodule have security implications,
 it is recommended to highlight those implications in the description
 of the revision statement.

9.2. Security considerations for the modules defined in this document

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 This document does not define any new protocol or data nodes that are
 writable.

Wilton, et al. Expires 19 October 2023 [Page 32]

Internet-Draft Updated YANG Module Revision Handling April 2023

 This document updates YANG Library [RFC8525] with augmentations to
 include revision labels in the YANG library data and two boolean
 leafs to indicate whether status deprecated and status obsolete
 schema nodes are implemented by the server. These read-only
 augmentations do not add any new security considerations beyond those
 already present in [RFC8525].

10. IANA Considerations

10.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-library-revisions module:

 Name: ietf-yang-library-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 revisions

 Prefix: yl-rev

 Reference: [RFCXXXX]

Wilton, et al. Expires 19 October 2023 [Page 33]

Internet-Draft Updated YANG Module Revision Handling April 2023

10.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example,
 "iana-if-type.yang" [IfTypeYang] is derived from the "Interface Types
 (ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang
 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible"
 substatement to the latest revision statement whenever an IANA
 maintained module is updated in a non-backwards-compatible way, as
 described in Section 3.2.

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible" substatement
 retrospectively added to any revisions containing non-backwards-
 compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,
 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

Wilton, et al. Expires 19 October 2023 [Page 34]

Internet-Draft Updated YANG Module Revision Handling April 2023

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

11. References

11.1. Normative References

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
 11, 10 April 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-netmod-yang-semver-11>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

Wilton, et al. Expires 19 October 2023 [Page 35]

Internet-Draft Updated YANG Module Revision Handling April 2023

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

11.2. Informative References

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-

Wilton, et al. Expires 19 October 2023 [Page 36]

Internet-Draft Updated YANG Module Revision Handling April 2023

 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Andersson, P. and R. Wilton, "YANG Schema Comparison",
 Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
 schema-comparison-02, 14 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-02>.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-ver-selection-00>.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 versioning-reqs-07, 10 July 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-versioning-reqs-07>.

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC9195] Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", RFC 9195, DOI 10.17487/RFC9195, February
 2022, <https://www.rfc-editor.org/info/rfc9195>.

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

Wilton, et al. Expires 19 October 2023 [Page 37]

Internet-Draft Updated YANG Module Revision Handling April 2023

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

 * Deleting a data node, or changing it to status obsolete.

 * Changing the name, type, or units of a data node.

 * Modifying the description in a way that changes the semantic
 meaning of the data node.

 * Any changes that remove any previously allowed values from the
 allowed value set of the data node, either through changes in the
 type definition, or the addition or changes to "must" statements,
 or changes in the description.

 * Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 * Making the statement conditional on if-feature.

Appendix B. Examples of applying the NBC change guidelines

 The following sections give steps that could be taken for making NBC
 changes to a YANG module or submodule using the incremental approach
 described in section Section 7.1.1.

 The examples are all for "config true" nodes.

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

 1. The schema node’s status is changed to "deprecated" and the node
 is supported for some period of time (e.g. one year). This is a
 BC change.

Wilton, et al. Expires 19 October 2023 [Page 38]

Internet-Draft Updated YANG Module Revision Handling April 2023

 2. When the schema node is not supported anymore, its status is
 changed to "obsolete" and the "description" updated. This is an
 NBC change.

B.2. Changing the type of a leaf node

 Changing the type of a leaf node. e.g., a "vpn-id" node of type
 integer being changed to a string:

 1. The status of schema node "vpn-id" is changed to "deprecated" and
 the node is supported for some period of time (e.g. one year).
 This is a BC change. The description is updated to indicate that
 "vpn-name" is replacing this node.

 2. A new schema node, e.g., "vpn-name", of type string is added to
 the same location as the existing node "vpn-id". This new node
 has status "current" and its description explains that it is
 replacing node "vpn-id".

 3. During the period of time when both schema nodes are supported,
 the interactions between the two nodes is outside the scope of
 this document and will vary on a case by case basis. One
 possible option is to have the server prevent the new node from
 being set if the old node is already set (and vice-versa). The
 new node could have a "when" statement added to it to achieve
 this. The old node, however, must not have a "when" statement
 added, or an existing "when" modified to be more restrictive,
 since this would be an NBC change. In any case, the server could
 reject the old node from being set if the new node is already
 set.

 4. When the schema node "vpn-id" is not supported anymore, its
 status is changed to "obsolete" and the "description" is updated.
 This is an NBC change.

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" schema node of type uint32 being changed from range 1..5000 to
 range 1..2000:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 2001 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

Wilton, et al. Expires 19 October 2023 [Page 39]

Internet-Draft Updated YANG Module Revision Handling April 2023

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
 change for the YANG model. Clients using the old YANG model will
 be impacted, so a change of this nature should be done carefully,
 e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address". Such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list is supported for some period of time (e.g. one year). This
 is a BC change. The description is updated to indicate the new
 list that is replacing this list.

 2. A new list is created in the same location with the same
 descendant schema nodes but with "dest-address" as key. Finding
 an appropriate name for the new list can be difficult. In this
 case the new list is called "sessions-address", has status
 "current" and its description should explain that it is replacing
 list "session".

 3. During the period of time when both lists are supported, the
 interactions between the two lists is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent entries in the new list from
 being created if the old list already has entries (and vice-
 versa).

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

B.5. Renaming a node

 A leaf or container schema node may be renamed, either due to a
 spelling error in the previous name or because of a better name. For
 example a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and is supported for some period of time (e.g. one
 year). This is a BC change. The description is updated to
 indicate the node that is replacing this node.

Wilton, et al. Expires 19 October 2023 [Page 40]

Internet-Draft Updated YANG Module Revision Handling April 2023

 2. The new schema node "ip-address" is added to the same location as
 the existing node "ip-adress". This new node has status
 "current" and its description should explain that it is replacing
 node "ip-adress".

 3. During the period of time when both nodes are available, the
 interactions between the two nodes is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent the new node from being set
 if the old node is already set (and vice-versa). The new node
 could have a "when" statement added to it to achieve this. The
 old node, however, must not have a "when" statement added, or an
 existing "when" modified to be more restrictive, since this would
 be an NBC change. In any case, the server could reject the old
 node from being set if the new node is already set.

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Contributors

 The following people made substantial contributions to this document:

 Bo Wu
 lana.wubo@huawei.com

 Jan Lindblad
 jlindbla@cisco.com

Acknowledgments

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The authors, contributors and the following
 individuals are (or have been) members of the design team and have
 worked on the YANG versioning project:

Wilton, et al. Expires 19 October 2023 [Page 41]

Internet-Draft Updated YANG Module Revision Handling April 2023

 Benoit Claise
 benoit.claise@huawei.com

 Ebben Aries
 exa@juniper.net

 Juergen Schoenwaelder
 j.shoenwaelder@jacobs-university.de

 Mahesh Jethanandani
 mjethanandani@gmail.com

 Michael (Wangzitao)
 wangzitao@huawei.com

 Per Andersson
 perander@cisco.com

 Qin Wu
 bill.wu@huawei.com

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin
 D’Souza and Benoit Claise for their initial work in this problem
 space.

 Discussions on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, and Kent Watsen for
 their contributions and review comments.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman (editor)
 Graphiant
 Email: reshad@yahoo.com

Wilton, et al. Expires 19 October 2023 [Page 42]

Internet-Draft Updated YANG Module Revision Handling April 2023

 Balazs Lengyel (editor)
 Ericsson
 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.
 Email: jclarke@cisco.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

Wilton, et al. Expires 19 October 2023 [Page 43]

Network Working Group P. Andersson, Ed.

Internet-Draft R. Wilton

Updates: 7950 (if approved) Cisco Systems, Inc.

Intended status: Standards Track 11 March 2023

Expires: 12 September 2023

 YANG Schema Comparison

 draft-ietf-netmod-yang-schema-comparison-02

Abstract

 This document specifies an algorithm for comparing two revisions of a

 YANG schema to determine the scope of changes, and a list of changes,

 between the revisions. The output of the algorithm can be used to

 help select an appropriate revision-label or YANG semantic version

 number for a new revision. This document defines a YANG extension

 that provides YANG annotations to help the tool accurately determine

 the scope of changes between two revisions.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Andersson & Wilton Expires 12 September 2023 [Page 1]

Internet-Draft YANG Schema Comparison March 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Key Issues . 3

 1.1. On-wire vs Schema analysis 3

 1.2. error-tags, error messages, and other error statements . 4

 1.3. Comparison on module or full schema (YANG artifact,

 arbitrary blob. Questions 4

 2. Open Issues . 4

 2.1. Override/per-node tags 5

 2.2. Separate rules for config vs state 5

 2.3. Tool/report verbosity 5

 2.4. sub-modules . 5

 2.5. Write algorithm in pseudo code or just describe the rules/

 goals in text? . 5

 2.6. Categories in the report: bc, nbc, potentially-nbc,

 editorial. Allow filtering in the draft without defining

 it? . 5

 2.7. Only for YANG 1.1? 5

 2.8. renamed-from . 5

 3. Tool options . 5

 4. Introduction . 6

 5. Terminology and Conventions 7

 6. Generic YANG schema tree comparison algorithm 8

 6.1. YANG module revision scope extension annotations 9

 6.2. Node compatibility extension statements 9

 7. YANG module comparison algorithm 13

 8. YANG schema comparison algorithms 13

 8.1. Standard YANG schema comparison algorithm 13

 8.2. Filtered YANG schema comparison algorithm 14

 9. Comparison tooling . 15

 10. Module Versioning Extension YANG Modules 15

 11. Contributors . 21

 12. Security Considerations 22

 13. IANA Considerations . 22

 13.1. YANG Module Registrations 22

 14. References . 22

 14.1. Normative References 22

 14.2. Informative References 23

 Authors’ Addresses . 24

Andersson & Wilton Expires 12 September 2023 [Page 2]

Internet-Draft YANG Schema Comparison March 2023

1. Key Issues

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 The contributors have identified several key issues that need

 attention. This section presents selected key issues which have been

 discussed together with suggestions for proposed solution or

 requirements.

1.1. On-wire vs Schema analysis

 Should one algorithm be used or two? The consesus reached was to

 define two separate algorithms, one for on-wire format and one for

 schema.

 On the wire: the focus is on what types of changes affect the client

 requests and server responses for YANG driven protocols, e.g.

 NETCONF, RESTCONF, gNMI. If the same requests and responses occur,

 then there is no "on the wire" impact of the change. For example,

 changing the name of a "choice" has no impact "on the wire". For

 many clients, this level of compatiblity is enough.

 Schema: any changes that affect the YANG schema in an NBC manner

 according to the full rules of

 [I-D.ietf-netmod-yang-module-versioning]. This may be important for

 clients that, for example, automatically generate code using the YANG

 and where the change of a typedef name or a choice name could be

 significant. Also important for other modules that may augment or

 deviate the schema being compared.

 Changes to the module that aren’t semantic should raise that there

 has been editorial changes

 Ordering in the schema, RFC 7950 doesn’t allow reordering; thus an

 NBC change.

 Open Questions:

 Groupings / uses

 typedefs, namespaces, choice names, prefixes, module metadata.

 * typedef renaming (on-wire, same base type etc)

 * Should all editorial (text) diffs be reported?

Andersson & Wilton Expires 12 September 2023 [Page 3]

Internet-Draft YANG Schema Comparison March 2023

 * What about editorial changes that might change semantics, e.g. a

 description of a leaf?

 * Metadata arguments which relies on the formatted input text. E.g

 description, contact (etc), extension (how does the user want to

 tune verbosity level for editorial changes: whitespace, spelling,

 editorial, potentially-nbc?

 * XPath, must, when: don’t normalize XPath expressions

 * presence statements

1.2. error-tags, error messages, and other error statements

 Error tags and messages might be relied on verbatim by users.

 * error-tag: standardized in [RFC6241]

 * error-app-tag: arbitrary text ([RFC6241] but also model)

 * error-message: arbitrary

 Failed must statement, error-message, assumed NBC

 Default behaviour is changes to error tags, messages etc are NBC.

1.3. Comparison on module or full schema (YANG artifact, arbitrary

 blob. Questions

 * features

 * packages vs directories vs libraries vs artifact

 * package specific comparison, package metadata or only looking at

 the modules

 * import only or implemented module

 Filter out comparison for a specific subrtree, path etc. Use case

 for on-wire e.g. yang subscriptions, did the model change fro what is

 subscribed on?

2. Open Issues

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 The following issues have not ben discussed in any wider extent yet.

Andersson & Wilton Expires 12 September 2023 [Page 4]

Internet-Draft YANG Schema Comparison March 2023

2.1. Override/per-node tags

2.2. Separate rules for config vs state

2.3. Tool/report verbosity

 * where to report changes (module, grouping, typedef, uses)

 * output level (conceptual level or exact strings)

 * granularity: error/warning/info level per reported change category

2.4. sub-modules

2.5. Write algorithm in pseudo code or just describe the rules/goals in

 text?

2.6. Categories in the report: bc, nbc, potentially-nbc, editorial.

 Allow filtering in the draft without defining it?

 One option can be to have a tool option that presents the reason

 behind the decision, e.g. --details could be used to explain to the

 user why a certain change was marked as nbc.

 Another option is to present reasoning and analysis in deeper levels

 of verbosity; e.g. one extra level of verbosity, -v, could present

 the reason for categorizing a change nbc, and an additional extra

 level of verbosity, e.g. -vv, could also present the detailed

 analysis the tool made to categorize the change.

2.7. Only for YANG 1.1?

2.8. renamed-from

3. Tool options

 { This section is only to present the current ongoing work, not part

 of the final draft. }

 During the work a list of useful tool options are identified for

 later discussion and publication in an appendix.

 * An option for how to interpret description changes (for the on-

 wire algorithm) by default, e.g. treat them as editorial or nbc.

 * Option: --skip-error-tags, etc

Andersson & Wilton Expires 12 September 2023 [Page 5]

Internet-Draft YANG Schema Comparison March 2023

4. Introduction

 Warning, this is an early (-00) draft with the intention of scoping

 the outline of the solution, hopefully for the WG to back the

 direction of the solution. Refinement of the solution details is

 expected, if this approach is accepted by the WG.

 This document defines a solution to Requirement 2.2 in

 [I-D.ietf-netmod-yang-versioning-reqs]. Complementary documents

 provide a complete solution to the YANG versioning requirements, with

 the overall relationship of the solution drafts described in

 [I-D.ietf-netmod-yang-solutions].

 YANG module ’revision-labels’

 [I-D.ietf-netmod-yang-module-versioning] and the use of YANG semantic

 version numbers [I-D.ietf-netmod-yang-semver] can be used to help

 manage and report changes between revisions of individual YANG

 modules.

 YANG packages [I-D.ietf-netmod-yang-packages] along with YANG

 semantic version numbers can be used to help manage and report

 changes between revisions of YANG schema.

 [I-D.ietf-netmod-yang-module-versioning] and

 [I-D.ietf-netmod-yang-packages] define how to classify changes

 between two module or package revisions, respectively, as backwards

 compatible or non-backwards-compatible.

 [I-D.ietf-netmod-yang-semver] refines the definition, to allow

 backwards compatible changes to be classified as ’minor changes’ or

 ’editorial changes’.

 ’Revision-label’s and YANG semantic version numbers, whilst being

 generally simple and helpful in the mainline revision history case,

 are not sufficient in all scenarios. For example, when comparing two

 revisions/versions on independent revision branches, without a direct

 ancestor relationship between the two revisions/versions. In this

 cases, an algorithmic comparison approach is beneficial.

 In addition, the module revision history’s ’nbc-changes’ extension

 statement, and YANG semantic version numbers, effectively declare the

 worst case scenario. If any non-backwards-compatible changes are

 restricted to only parts of the module/schema that are not used by an

 operator, then the operator is able to upgrade, and effectively treat

 the differences between the two revisions/versions as backwards

 compatible because they are not materially impacted by the non-

 backwards-compatible changes.

Andersson & Wilton Expires 12 September 2023 [Page 6]

Internet-Draft YANG Schema Comparison March 2023

 Hence, this document defines algorithms that can be applied to

 revisions of YANG modules or versions of YANG schema (e.g., as

 represented by YANG packages), to determine the changes, and scope of

 changes between the revisions/versions.

 For many YANG statements, programmatic tooling can determine whether

 the changes between the statements constitutes a backwards-compatible

 or non-backwards-compatible change. However, for some statements, it

 is not feasible for current tooling to determine whether the changes

 are backwards-compatible or not. For example, in the general case,

 tooling cannot determine whether the change in a YANG description

 statement causes a change in the semantics of a YANG data node. If

 the change is to fix a typo or spelling mistake then the change can

 be classified as an editorial backwards-compatible change.

 Conversely, if the change modifies the behavioral specification of

 the data node then the change would need to be classified as either a

 non editorial backwards-compatible change or a non-backwards-

 compatible change. Hence, extension statements are defined to

 annotate a YANG module with additional information to clarify the

 scope of changes in cases that cannot be determined by algorithmic

 comparison.

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/

 issues, tagged with ’schema-comparison’.

5. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 This document makes use of the following terminology introduced in

 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 This document uses terminology introduced in the YANG versioning

 requirements document [I-D.ietf-netmod-yang-versioning-reqs].

 This document makes of the following terminology introduced in the

 YANG Packages [I-D.ietf-netmod-yang-packages]:

 * YANG schema

 In addition, this document defines the terminology:

Andersson & Wilton Expires 12 September 2023 [Page 7]

Internet-Draft YANG Schema Comparison March 2023

 * Change scope: Whether a change between two revisions is classified

 as non-backwards-compatible, backwards-compatible, or editorial.

 * Node compatibility statement: An extension statements (e.g. nbc-

 change-at) that can be used to indicate the backwards

 compatibility of individual schema nodes and specific YANG

 statements.

6. Generic YANG schema tree comparison algorithm

 The generic schema comparison algorithm works on any YANG schema.

 This could be a schema associated with an individual YANG module, or

 a YANG schema represented by a set of modules, e.g., specified by a

 YANG package.

 The algorithm performs a recursive tree wise comparison of two

 revisions of a YANG schema, with the following behavior:

 The comparison algorithm primarily acts on the parts of the schema

 defined by unique identifiers.

 Each identifier is qualified with the name of the module that

 defines the identifier.

 Identifiers in different namespaces (as defined in 6.2.1 or RFC

 7950) are compared separately. E.g., ’features’ are compared

 separately from ’identities’.

 Within an identifier namespace, the identifiers are compared

 between the two schema revisions by qualified identifier name.

 The ’renamed-from’ extension allow for a meaningful comparison

 where the name of the identifier has changed between revisions.

 The ’renamed-from’ identifier parameter is only used when an

 identifier in the new schema revision cannot be found in the old

 schema revision.

 YANG extensions, features, identities, typedefs are checked by

 comparing the properties defined by their YANG sub-statements

 between the two revisions.

 YANG groupings, top-level data definition statements, rpcs, and

 notifications are checked by comparing the top level properties

 defined by their direct child YANG sub-statements, and also by

 recursively checking the data definition statements.

 The rules specified in section 3 of

 [I-D.ietf-netmod-yang-module-versioning] determine whether the

 changes are backwards-compatible or non-backwards-compatible.

Andersson & Wilton Expires 12 September 2023 [Page 8]

Internet-Draft YANG Schema Comparison March 2023

 The rules specified in section 3.2 of

 [I-D.ietf-netmod-yang-packages] determine whether backwards-

 compatible changes are ’minor’ or ’editorial’.

 For YANG "description", "must", and "when" statements, the

 "backwards-compatible" and "editorial" extension statements can be

 used to mark instances when the statements have changed in a

 backwards-compatible or editorial way. Since by default the

 comparison algorithm assumes that any changes in these statements

 are non-backwards-compatible. XXX, more info required here, since

 the revisions in the module history probably need to be available

 for this to work in the general branched revisions case.

 Submodules are not relevant for schema comparison purposes, i.e.

 the comparison is performed after submodule resolution has been

 completed.

6.1. YANG module revision scope extension annotations

6.2. Node compatibility extension statements

 In addition to the revision extension statement in

 [I-D.ietf-netmod-yang-module-versioning], this document defines YANG

 extension statements to indicate compatibility information for

 individual schema nodes and certain YANG statements.

 The node compatibility extension statements are applicable to schema

 nodes (e.g. leaf, rpc, choice) as defined in [RFC7950], as well as a

 set of YANG statements (e.g. typedef) as listed in the YANG

 definition of the nbc-change-at extension in the ietf-yang-revisions

 module in this document.

 While the top level non-backwards-compatible-revision statement is

 mandatory when there is a non-backwards-compatible change, the node

 compatibility statements are optional.

 For many YANG statements, programmatic tooling can determine whether

 the changes to a statement between two module revisions constitutes a

 backwards-compatible or non-backwards-compatible change. However,

 for some statements, it may be impractical for tooling to determine

 whether the changes are backwards-compatible or not. For example, in

 the general case, tooling cannot determine whether the change in a

 YANG description statement causes a change in the semantics of a YANG

 schema node. If the change is to fix a typo or spelling mistake then

 the change can be classified as an editorial backwards-compatible

 change. Conversely, if the change modifies the behavioral

 specification of the data node then the change would need to be

Andersson & Wilton Expires 12 September 2023 [Page 9]

Internet-Draft YANG Schema Comparison March 2023

 classified as either a non editorial backwards-compatible change or a

 non-backwards-compatible change. Hence, extension statements are

 defined to annotate a YANG module with additional information to

 clarify the scope of changes in cases that cannot be determined by

 algorithmic comparison.

 Three extensions are defined for schema node compatibility

 information:

 nbc-change-at: Indicates a specific YANG statement had a non-

 backwards-compatible change at a particular module or sub-module

 revision

 bc-change-at: Indicates a specific YANG statement had a backwards-

 compatible change at a particular module or sub-module revision

 editorial-change-at: Indicates a specific YANG statement had an

 editorial change at a particular module or sub-module revision.

 The meaning of an editorial change is as per YANG Semver

 [I-D.ietf-netmod-yang-semver]

 When a node compatibility statement is added to a schema node in a

 sub-module, the revision indicated for the compatibility statement is

 that of the sub-module.

 Adding, modifying or removing any of the node compatibility

 statements is considered to be a BC change.

 The following example illustrates the node compatibility statements:

Andersson & Wilton Expires 12 September 2023 [Page 10]

Internet-Draft YANG Schema Comparison March 2023

 container some-stuff {

 leaf used-to-be-a-string {

 rev:nbc-change-at "3.0.0" {

 description "Changed from a string to a uint32.";

 }

 type uint32;

 }

 leaf fixed-my-description-typo {

 rev:editorial-change-at "2022-06-03";

 type string;

 description "This description used to have a typo."

 }

 list sir-changed-a-lot {

 rev:editorial-change-at "3.0.0";

 rev:bc-change-at "2.3.0";

 rev:bc-change-at "1.2.1_non_compatible";

 description "a list of stuff";

 ordered-by user;

 key "foo";

 leaf foo {

 type string;

 }

 leaf thing {

 type uint8;

 }

 }

 Note that an individual YANG statement may have a backwards-

 compatible change in a revision that is non-backwards-compatible

 (e.g. some other node changed in a non-backwards-compatible fashion

 in that particular revision).

 If changes are ported from one branch of YANG model revisions to

 another branch, care must be taken with any node compatibilty

 statements. A simple copy-n-paste should not be used. The node

 compatibilty statements may incorrectly reference a revision that is

 not in the history of the new revision. Further, the statements

 might not apply depending on what the history is like in that new

 branch (e.g., an NBC change that is ported might not be an NBC change

 in the new branch). Node compatiblity statements should not be

 copied over to the new branch. Instead, the changes should be

 considered as completely new on the new branch, and any compatibility

 information should be generated from scratch.

Andersson & Wilton Expires 12 September 2023 [Page 11]

Internet-Draft YANG Schema Comparison March 2023

 When a node compatibility statement is present, that compatibilty

 statement is the authoritative classification of the backwards

 compatibility of the change to the schema node in the specifed

 revision. This allows a human author to explicitly communicate the

 compatibilty and potentially override the rules specified in this

 document. This is useful in a number of situations including:

 * When a tool may not be able to accurately determine the

 compatibilty of a change. For example, a change in a ’pattern’ or

 ’must’ statement can be difficult for a user or tool to determine

 if it is a compatible change.

 * When a pattern, range or other statement is changed to more

 correctly define the server constraint. An example is correcting

 a pattern that incorrectly included 355.xxx.xxx.xxx as a possible

 IPv4 address to make it only accept up to 255.xxx.xxx.xxx.

 Nothing about the backwards compatibility of a schema node is implied

 by the absence of a node compatibility statement. Hence, the schema

 node definition must be compared between the two revisions to

 determine the backwards compatibility.

 If any nbc-change-at extension statements exists in a module or sub-

 module, then the module or sub-module MUST have non-backwards-

 compatible-revision substatements in each revision statement of the

 module or sub-module history where the revision matches the argument

 of any nbc-change-at statements. If any revision statements are

 removed, then all node compatibiilty statements that reference that

 revision MUST also be removed. Conversely, node compatibilty

 statements MUST NOT be removed unless the associated revision

 statement in the revision history is removed.

 If a node compatiblity statement is added to a grouping, then all

 instances where the grouping is used in the module or by an importing

 module are also impacted by the compatibilty information. Similarly

 for a ’typedef’, all leafs and leaf-lists that use that typedef share

 the specified compatibility classification. A non-backwards-

 compatible change to a typedef or grouping defined in one module that

 is used by an importing module, does not cause the importing module

 to add a non-backwards-compatible-revision statement to the revision

 history. Non-backwards-compatible marking does not carry through

 import statements.

 A node compatibility statement at a leaf, leaf-list, or typedef

 context takes precedence over a node compatibility statement in a

 typedef used by the leaf, leaf-list, or typedef. If multiple

 typedefs with compatibility statements are used by a leaf, leaf-list,

 or typedef (e.g. a union), and there is no compatibility statement at

Andersson & Wilton Expires 12 September 2023 [Page 12]

Internet-Draft YANG Schema Comparison March 2023

 the top leaf, leaf-list, or typedef context, then the order of

 precedence used to classify the compatibility of the top level leaf,

 leaf-list, or typedef is as follows: nbc-change-at, bc-change-at, and

 finally editorial-change-at. That is, the leaf, leaf-list, or

 typedef takes the most impactful change classification of all the

 underlying typedefs.

 Node compatibility statements are not supported on YANG statements

 such as ’pattern’ or ’range’. The compatibility statement instead

 goes against the leaf, leaf-list, or typedef context.

 Node compatibility statements that refer to pre-release revisions of

 a module MUST be removed when a full release revision of the module

 is published.

 Node compatibilty statements SHOULD NOT be used when it isn’t clear

 which change the statement is referring to. For example: If a leaf

 is reordered within a container, a node compatibility statement

 SHOULD NOT be used against the parent container nor against the

 reordered leaf. Similarly, if a leaf is renamed or moved to another

 context without keeping the old leaf present in the model and marked

 obsolete, a node compatibilty statement SHOULD not be used.

7. YANG module comparison algorithm

 The schema comparison algorithm defined in Section 6 can be used to

 compare the schema for individual modules, but with the following

 modifications:

 Changes to the module’s metadata information (i.e. module level

 description, contact, organization, reference) should be checked

 (as potential editorial changes).

 The module’s revision history should be ignored from the

 comparison.

 Changes to augmentations and deviations should be sorted by path

 and compared.

8. YANG schema comparison algorithms

8.1. Standard YANG schema comparison algorithm

 The standard method for comparing two YANG schema versions is to

 individually compare the module revisions for each module implemented

 by the schema using the algorithm defined in Section 7 and then

 aggregating the results together:

Andersson & Wilton Expires 12 September 2023 [Page 13]

Internet-Draft YANG Schema Comparison March 2023

 * If all implemented modules in the schema have only changed in an

 editorial way then the schema is changed in an editorial way

 * If all implemented modules in the schema have only been changed in

 an editorial or backwards-compatible way then the schema is

 changed in a backwards-compatible way

 * Otherwise if any implemented module in the schema has been changed

 in a non-backwards-compatible way then the schema is changed in a

 non-backwards-compatible way.

 The standard schema comparison method is the RECOMMENDED scheme to

 calculate the version number change for new versions of YANG

 packages, because it allows the package version to be calculated

 based on changes to implemented modules revision history (or YANG

 semantic version number if used to identify module revisions).

8.2. Filtered YANG schema comparison algorithm

 Another method to compare YANG schema, that is less likely to report

 inconsequential differences, is to construct full schema trees for

 the two schema versions, directly apply a version of the comparison

 algorithm defined in Section 6. This may be particular useful when

 the schema represents a complete datastore schema for a server

 because it allows various filtered to the comparison algorithm to

 provide a more specific answer about what changes may impact a

 particular client.

 The full schema tree can easily be constructed from a YANG package

 definition, or alternative YANG schema definition.

 Controlled by input parameters to the comparison algorithm, the

 following parts of the schema trees can optionally be filtered during

 the comparison:

 All "grouping" statements can be ignored (after all "use"

 statements have been processed when constructing the schema).

 All module and submodule metadata information (i.e. module level

 description, contact, organization, reference) can be ignored.

 The comparison can be restricted to the set of features that are

 of interest (different sets of features may apply to each schema

 versions).

Andersson & Wilton Expires 12 September 2023 [Page 14]

Internet-Draft YANG Schema Comparison March 2023

 The comparison can be restricted to the subset of data nodes,

 RPCs, notifications and actions, that are of interest (e.g., the

 subset actually used by a particular client), providing a more

 meaningful result.

 The comparison could filter out backwards-compatible ’editorial’

 changes.

 In addition to reporting the overall scope of changes at the schema

 level, the algorithm output can also optionally generate a list of

 specific changes between the two schema, along with the

 classification of those individual changes.

9. Comparison tooling

 ’pyang’ has some support for comparison two module revisions, but

 this is currently limited to a linear module history.

 TODO, it would be helpful if there is reference tooling for schema

 comparison.

10. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,

 revision label, status description, and importing by version.

 <CODE BEGINS> file "ietf-yang-rev-annotations@2023-02-14.yang"

 module ietf-yang-rev-annotations {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-rev-annotations";

 prefix rev-ext;

 import ietf-yang-revisions {

 prefix rev;

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Robert Wilton

 <mailto:rwilton@cisco.com>";

 description

 "This YANG 1.1 module contains extensions to annotation to YANG

 module with additional metadata information on the nature of

Andersson & Wilton Expires 12 September 2023 [Page 15]

Internet-Draft YANG Schema Comparison March 2023

 changes between two YANG module revisions.

 XXX, maybe these annotations could also be included in

 ietf-yang-revisions?

 Copyright (c) 2019 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust’s Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,

 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication

 // and remove this note.

 // RFC Ed.: replace XXXX (inc above) with actual RFC number and

 // remove this note.

 revision 2023-03-11 {

 rev:revision-label 1.0.0-draft-ietf-netmod-yang-schema-comparison-02;

 description

 "Draft revision";

 reference

 "XXXX: YANG Schema Comparison";

 }

 extension nbc-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where a non-backwards-compatible change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

Andersson & Wilton Expires 12 September 2023 [Page 16]

Internet-Draft YANG Schema Comparison March 2023

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 nbc-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An nbc-change-at statement can have 0 or 1 ’description’

 substatements.

 The nbc-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension bc-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where a backwards-compatible change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

Andersson & Wilton Expires 12 September 2023 [Page 17]

Internet-Draft YANG Schema Comparison March 2023

 bc-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An bc-change-at statement can have 0 or 1 ’description’

 substatements.

 The bc-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension editorial-change-at {

 argument revision-date-or-label;

 description

 "A node compatibility statement that identifies a revision

 (by revision-label, or revision date if a revision-label is

 not available) where an editorial change has

 occurred in a particular YANG statement relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 editorial-change-at substatements:

 - all schema node statements (leaf, rpc, choice, etc)

 - ’feature’ statements

Andersson & Wilton Expires 12 September 2023 [Page 18]

Internet-Draft YANG Schema Comparison March 2023

 - ’grouping’ statements

 - ’identity’ statements

 - ’must’ statements

 - ’refine’ statements

 - ’typedef’ statements

 - YANG extensions

 Each YANG statement MUST only a have a single node

 compatibilty statement (one of nbc-change-at, bc-change-at,

 or editorial-change-at) for a particular revision. When a node

 has more than one of the node compatibilty statements (for

 different revisions), they must be ordered from most recent

 to least recent.

 An editorial-change-at statement can have 0 or 1 ’description’

 substatements.

 The editorial-change-at statement in not inherited by descendants

 in the schema tree. It only applies to the specific YANG

 statement with which it is associated.

 ";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension backwards-compatible {

 argument revision-date-or-label;

 description

 "Identifies a revision (by revision-label, or revision date if

 a revision-label is not available) where a

 backwards-compatible change has occurred relative to the

 previous revision listed in the revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 ’rev-ext:non-backwards-compatible’ statements:

 description

 must

 when

 Each YANG statement MUST only a have a single

 non-backwards-compatible, backwards-compatible, or editorial

Andersson & Wilton Expires 12 September 2023 [Page 19]

Internet-Draft YANG Schema Comparison March 2023

 extension statement for a particular revision-label, or

 corresponding revision-date.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension editorial {

 argument revision-date-or-label;

 description

 "Identifies a revision (by revision-label, or revision date if

 a revision-label is not available) where an editorial change

 has occurred relative to the previous revision listed in the

 revision history.

 The format of the revision-label argument MUST conform to the

 pattern defined for the ietf-yang-revisions

 revision-date-or-label typedef.

 The following YANG statements MAY have zero or more

 ’rev-ext:non-backwards-compatible’ statements:

 description

 Each YANG statement MUST only a have a single

 non-backwards-compatible, backwards-compatible, or editorial

 extension statement for a particular revision-label, or

 corresponding revision-date.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 extension renamed-from {

 argument yang-identifier;

 description

 "Specifies a previous name for this identifier.

 This can be used when comparing schema to optimize handling

 for data nodes that have been renamed rather than naively

 treated them as data nodes that have been deleted and

 recreated.

 The argument ’yang-identifier’ MUST take the form of a YANG

 identifier, as defined in section 6.2 of RFC 7950.

 Any YANG statement that takes a YANG identifier as its

Andersson & Wilton Expires 12 September 2023 [Page 20]

Internet-Draft YANG Schema Comparison March 2023

 argument MAY have a single ’rev-ext:renamed-from’

 sub-statement.

 TODO, we should also facilitate identifiers being moved into

 other modules, e.g. by supporting a module-name qualified

 identifier.";

 reference

 "XXXX: YANG Schema Comparison;

 Section XXX, XXX";

 }

 }

 <CODE ENDS>

11. Contributors

 This document grew out of the YANG module versioning design team that

 started after IETF 101. The following individuals are (or have been)

 members of the design team and have worked on the YANG versioning

 project:

 * Balazs Lengyel

 * Benoit Claise

 * Bo Wu

 * Ebben Aries

 * Jason Sterne

 * Joe Clarke

 * Juergen Schoenwaelder

 * Mahesh Jethanandani

 * Michael Wang

 * Qin Wu

 * Reshad Rahman

 * Rob Wilton

 * Jan Lindblad

 * Per Andersson

Andersson & Wilton Expires 12 September 2023 [Page 21]

Internet-Draft YANG Schema Comparison March 2023

 The ideas for a tooling based comparison of YANG module revisions was

 first described in [I-D.clacla-netmod-yang-model-update]. This

 document extends upon those initial ideas.

12. Security Considerations

 The document does not define any new protocol or data model. There

 are no security impacts.

13. IANA Considerations

13.1. YANG Module Registrations

 The following YANG module is requested to be registered in the "IANA

 Module Names" registry:

 The ietf-yang-rev-annotations module:

 Name: ietf-yang-rev-annotations

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-rev-

 annotations

 Prefix: rev-ext

 Reference: [RFCXXXX]

14. References

14.1. Normative References

 [I-D.ietf-netmod-yang-module-versioning]

 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.

 Sterne, "Updated YANG Module Revision Handling", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-module-

 versioning-08, 12 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-module-versioning-08>.

 [I-D.ietf-netmod-yang-packages]

 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,

 "YANG Packages", Work in Progress, Internet-Draft, draft-

 ietf-netmod-yang-packages-03, 4 March 2022,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-packages-03>.

Andersson & Wilton Expires 12 September 2023 [Page 22]

Internet-Draft YANG Schema Comparison March 2023

 [I-D.ietf-netmod-yang-semver]

 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,

 J., and B. Claise, "YANG Semantic Versioning", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-

 10, 17 January 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-semver-10>.

 [I-D.ietf-netmod-yang-solutions]

 Wilton, R., "YANG Versioning Solution Overview", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-

 solutions-01, 2 November 2020,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-solutions-01>.

 [I-D.ietf-netmod-yang-versioning-reqs]

 Clarke, J., "YANG Module Versioning Requirements", Work in

 Progress, Internet-Draft, draft-ietf-netmod-yang-

 versioning-reqs-07, 10 July 2022,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 yang-versioning-reqs-07>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

14.2. Informative References

 [I-D.clacla-netmod-yang-model-update]

 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New

 YANG Module Update Procedure", Work in Progress, Internet-

 Draft, draft-clacla-netmod-yang-model-update-06, 2 July

 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-

 netmod-yang-model-update-06>.

Andersson & Wilton Expires 12 September 2023 [Page 23]

Internet-Draft YANG Schema Comparison March 2023

Authors’ Addresses

 Per Andersson (editor)

 Cisco Systems, Inc.

 Email: perander@cisco.com

 Robert Wilton

 Cisco Systems, Inc.

 Email: rwilton@cisco.com

Andersson & Wilton Expires 12 September 2023 [Page 24]

Network Working Group J. Clarke, Ed.
Internet-Draft R. Wilton, Ed.
Updates: 8407 (if approved) Cisco Systems, Inc.
Intended status: Standards Track R. Rahman
Expires: 12 October 2023 Graphiant
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 B. Claise
 Huawei
 10 April 2023

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-11

Abstract

 This document specifies a scheme and guidelines for applying an
 extended set of semantic versioning rules to revisions of YANG
 artifacts (e.g., modules and packages). Additionally, this document
 defines an RFCAAAA-compliant revision-label-scheme for this YANG
 semantic versioning scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 12 October 2023 [Page 1]

Internet-Draft YANG Semver April 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology and Conventions 3
 3. YANG Semantic Versioning 4
 3.1. Relationship Between SemVer and YANG Semver 4
 3.2. YANG Semver Pattern 4
 3.3. Semantic Versioning Scheme for YANG Artifacts 5
 3.3.1. Branching Limitations with YANG Semver 7
 3.3.2. YANG Semver with submodules 8
 3.3.3. Examples for YANG semantic versions 8
 3.4. YANG Semantic Version Update Rules 10
 3.5. Examples of the YANG Semver Label 12
 3.5.1. Example Module Using YANG Semver 12
 3.5.2. Example of Package Using YANG Semver 14
 4. Import Module by Semantic Version 15
 5. Guidelines for Using Semver During Module Development 15
 5.1. Pre-release Version Precedence 17
 5.2. YANG Semver in IETF Modules 17
 5.2.1. Guidelines for IETF Module Development 17
 5.2.2. Guidelines for Published IETF Modules 18
 6. YANG Module . 18
 7. Contributors . 20
 8. Acknowledgments . 20
 9. Security Considerations 21
 10. IANA Considerations . 21
 10.1. YANG Module Registrations 21
 10.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 22
 11. References . 23
 11.1. Normative References 23
 11.2. Informative References 23
 Appendix A. Example IETF Module Development 25
 Authors’ Addresses . 26

Clarke, et al. Expires 12 October 2023 [Page 2]

Internet-Draft YANG Semver April 2023

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating YANG modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a scheme that uses the revision history as a
 lineage for determining from where a specific revision of a YANG
 module or submodule is derived. Additionally, section 3.4 of
 [I-D.ietf-netmod-yang-module-versioning] defines a revision-label
 which can be used as an alias to provide additional context or as a
 meaningful label to refer to a specific revision.

 This document defines a revision-label scheme that uses extended
 semantic versioning rules [SemVer] for YANG artifacts (i.e., YANG
 modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages]) as well as the revision label
 definition for using this scheme. The goal being to add a human
 readable revision label that provides compatibility information for
 the YANG artifact without needing to compare or parse its body. The
 label and rules defined herein represent the RECOMMENDED revision
 label scheme for IETF YANG artifacts.

 Note that a specific revision of the SemVer 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
 the purposes of this document.

 * SemVer: A version string that corresponds to the rules defined in
 [SemVer] . This specific camel-case notation is the one used by
 the SemVer 2.0.0 website and used within this document to
 distinguish between YANG Semver.

Clarke, et al. Expires 12 October 2023 [Page 3]

Internet-Draft YANG Semver April 2023

 * YANG Semver: A revision-label identifier that is consistent with
 the extended set of semantic versioning rules, based on [SemVer] ,
 defined within this document.

3. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and describes the rules associated with
 changing an artifact’s semantic version when its contents are
 updated.

3.1. Relationship Between SemVer and YANG Semver

 [SemVer] is completely compatible with YANG Semver in that a SemVer
 semantic version number is legal according to the YANG Semver rules
 (though the inverse is not necessarily true). YANG Semver is a
 superset of the SemVer rules, and allow for limited branching within
 YANG artifacts. If no branching occurs within a YANG artifact (i.e.,
 you do not use the compatibility modifiers described below), the YANG
 Semver version label will appear as a SemVer version number.

3.2. YANG Semver Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version string (e.g., in revision-label or as a
 package version) that corresponds to the following pattern:
 ’X.Y.Z_COMPAT’. Where:

 * X, Y and Z are mandatory non-negative integers that are each less
 than or equal to 2147483647 (i.e., the maximum signed 32-bit
 integer value) and MUST NOT contain leading zeroes,

 * The ’.’ is a literal period (ASCII character 0x2e),

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only be present if the following COMPAT element is
 included,

 * COMPAT, if specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible".

 Additionally, [SemVer] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a YANG Semver string after a trailing ’-’
 character. Build metadata MAY be appended after a trailing ’+’
 character. If both pre-release and build metadata are present, then
 build metadata MUST follow pre-release metadata. While build
 metadata MUST be ignored when comparing YANG semantic versions, pre-

Clarke, et al. Expires 12 October 2023 [Page 4]

Internet-Draft YANG Semver April 2023

 release metadata MUST be used during module and submodule development
 as specified in Section 5 . Both pre-release and build metadata are
 allowed in order to support all the [SemVer] rules. Thus, a version
 lineage that follows strict [SemVer] rules is allowed for a YANG
 artifact.

 To signal the use of this versioning scheme, modules and submodules
 MUST set the revision-label-scheme extension, as defined in
 [I-D.ietf-netmod-yang-module-versioning] , to the identity "yang-
 semver". That identity value is defined in the ietf-yang-semver
 module below.

 Additionally, this ietf-yang-semver module defines a typedef that
 formally specifies the syntax of the YANG Semver.

3.3. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts that employ the YANG Semver label. The
 versioning scheme has the following properties:

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [SemVer]
 to cover the additional requirements for the management of YANG
 artifact lifecyles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 * Unlike the [SemVer] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning] .

 * YANG artifacts that follow the [SemVer] versioning scheme are
 fully compatible with implementations that understand the YANG
 semantic versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version numbers used by the YANG semantic
 versioning scheme are exactly the same as those defined by the
 [SemVer] versioning scheme.

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version as the argument to the ’rev:revision-label’ statement.

Clarke, et al. Expires 12 October 2023 [Page 5]

Internet-Draft YANG Semver April 2023

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version label. For example,
 the first revision of a module or submodule may have been produced
 before this scheme was available.

 YANG packages that make use of this YANG Semver will reflect that in
 the package metadata.

 As stated above, the YANG semantic version is expressed as a string
 of the form: ’X.Y.Z_COMPAT’.

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no "_compatible" or "_non_compatible" modifier.

 * ’Z’ is the PATCH version. Changes in the PATCH version number can
 indicate an editorial change to the YANG artifact. In conjunction
 with the ’_COMPAT’ modifier (see below) changes to ’Z’ may
 indicate a more substantive module change. An editorial change is
 defined to be a change in the YANG artifact’s content that does
 not affect the semantic meaning or functionality provided by the
 artifact in any way. Some examples include correcting a spelling
 mistake in the description of a leaf within a YANG module or
 submodule, non-significant whitespace changes (e.g., realigning
 description statements or changing indentation), or changes to
 YANG comments. Note: restructuring how a module uses, or does not
 use, submodules is treated as an editorial level change on the
 condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 * ’_COMPAT’ is an additional modifier, unique to YANG Semver (i.e.,
 not valid in [SemVer]), that indicates backwards-compatible, or
 non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier ’_COMPAT’ takes:

 - If the modifier string is absent, the change represents an
 editorial change.

Clarke, et al. Expires 12 October 2023 [Page 6]

Internet-Draft YANG Semver April 2023

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The ’_COMPAT’ modifier string is "sticky". Once a revision of a
 module has a modifier in the revision label, then all descendants of
 that revision with the same X.Y version digits will also have a
 modifier. The modifier can change from "_compatible" to
 "_non_compatible" in a descendant revision, but the modifier MUST NOT
 change from "_non_compatible" to "_compatible" and MUST NOT be
 removed. The persistence of the "_non_compatible" modifier ensures
 that comparisons of revision labels do not give the false impression
 of compatibility between two potentially non-compatible revisions.
 If "_non_compatible" was removed, for example between revisions
 "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply an
 editorial change), then comparing revision labels of "3.3.3" back to
 an ancestor "3.0.0" would look like they are backwards compatible
 when they are not (since "3.3.2_non_compatible" was in the chain of
 ancestors and introduced a non-backwards-compatible change).

 The YANG artifact name and YANG semantic version uniquely identify a
 revision of said artifact. There MUST NOT be multiple instances of a
 YANG artifact definition with the same name and YANG semantic version
 but different content (and in the case of modules and submodules,
 different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

3.3.1. Branching Limitations with YANG Semver

 YANG artifacts that use the YANG Semver revision-label scheme MUST
 ensure that two artifacts with the same MAJOR version number and no
 _compatible or _non_compatible modifiers are backwards compatible.
 Therefore, certain branching schemes cannot be used with YANG Semver.
 For example, the following branched parent-child module relationship
 using the following YANG Semver revision labels is not supported:

Clarke, et al. Expires 12 October 2023 [Page 7]

Internet-Draft YANG Semver April 2023

 3.5.0 -- 3.6.0 (add leaf foo)
 |
 |
 3.20.0 (added leaf bar)

 In this case, given only the revision labels 3.6.0 and 3.20.0 without
 any parent-child relationship information, one would assume that
 3.20.0 is backwards compatible with 3.6.0. But in the illegal
 example above, 3.20.0 is not backwards compatible with 3.6.0 since
 3.20.0 does not contain the leaf foo.

 Note that this type of branched parent-child relationship, where two
 revisions have different backwards compatible changes based on the
 same parent, is allowed in [I-D.ietf-netmod-yang-module-versioning] .

3.3.2. YANG Semver with submodules

 YANG Semver MAY be used to version submodules. Submodule version are
 separate of any version on the including module, but if a submodule
 has changed, then the version of the including module MUST also be
 updated.

 The rules for determining the version change of a submodule are the
 same as those defined in Section 3.2 and Section 3.3 as applied to
 YANG modules, except they only apply to the part of the module schema
 defined within the submodule’s file.

 One interesting case is moving definitions from one submodule to
 another in a way that does not change the resultant schema of the
 including module. In this case:

 1. The including module has editorial changes

 2. The submodule with the schema definition removed has non-
 backwards-compatible changes

 3. The submodule with the schema definitions added has backwards-
 compatible changes

 Note that the meaning of a submodule may change drastically despite
 having no changes in content or revision due to changes in other
 submodules belonging to the same module (e.g. groupings and typedefs
 declared in one submodule and used in another).

3.3.3. Examples for YANG semantic versions

 The following diagram and explanation illustrate how YANG semantic
 versions work.

Clarke, et al. Expires 12 October 2023 [Page 8]

Internet-Draft YANG Semver April 2023

 YANG Semantic versions for an example module:

 0.1.0
 |
 0.2.0
 |
 1.0.0
 |
 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 |
 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | \
 2.0.0 \
 | \--> 1.3.0 -> 1.3.1_non_compatible
 3.0.0 |
 | 1.4.0
 3.1.0

 The tree diagram above illustrates how the version history might
 evolve for an example module. The tree diagram only shows the
 parent/child ancestry relationships between the revisions. It does
 not describe the chronology of the revisions (i.e. when in time each
 revision was published relative to the other revisions).

 The following description lists an example of what the chronological
 order of the revisions could look like, from oldest revision to
 newest:

 0.1.0 - first pre-release module version

 0.2.0 - second pre-release module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0. This revision was created after
 1.2.0 otherwise it may have been released as 1.2.0. (BC)

Clarke, et al. Expires 12 October 2023 [Page 9]

Internet-Draft YANG Semver April 2023

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

 1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 1.4.0 - introduce new leaf "ghoti" (BC)

 3.1.0 - introduce new leaf "wobble" (BC)

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky. (BC)

 The partial ancestry relationships based on the semantic versioning
 numbers are as follows:

 1.0.0 < 1.1.0 < 1.2.0 < 2.0.0 < 3.0.0 < 3.1.0

 1.0.0 < 1.1.0 < 1.1.1_compatible < 1.1.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.2.1_non_compatible <
 1.2.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.3.1_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.4.0

 There is no ordering relationship between "1.1.1_non_compatible" and
 either "1.2.0" or "1.2.1_non_compatible", except that they share the
 common ancestor of "1.1.0".

 Looking at the version number alone does not indicate ancestry. The
 module definition in "2.0.0", for example, does not contain all the
 contents of "1.3.0". Version "2.0.0" is not derived from "1.3.0".

3.4. YANG Semantic Version Update Rules

 When a new revision of an artifact is produced, then the following
 rules define how the YANG semantic version for the new artifact
 revision is calculated, based on the changes between the two artifact
 revisions, and the YANG semantic version of the base artifact
 revision from which the changes are derived.

Clarke, et al. Expires 12 October 2023 [Page 10]

Internet-Draft YANG Semver April 2023

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version:

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 3. If an artifact is being updated in an editorial way, then the
 next version number depends on the format of the current version
 number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version numbers beginning with 0, i.e.,
 "0.X.Y", are regarded as pre-release definitions and need not
 follow the rules above. Either the MINOR or PATCH version
 numbers may be updated, regardless of whether the changes are
 non-backwards-compatible, backwards-compatible, or editorial.
 See Section 5 for more details on using this notation during
 module and submodule development.

 5. Additional pre-release rules for modules that have had at least
 one release are specified in Section 5 .

Clarke, et al. Expires 12 October 2023 [Page 11]

Internet-Draft YANG Semver April 2023

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version number, the following rules MAY be applied when choosing a
 new version number:

 1. An artifact author MAY update the version number with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

 2. An artifact author MAY skip version numbers. That is, an
 artifact’s revision history could be 1.0.0, 1.1.0, and 1.3.0
 where 1.2.0 is skipped. Note that skipping versions has an
 impact when importing modules by revision-or-derived. See
 Section 4 for more details on importing modules with revision-
 label version gaps.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison] , also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
 backwards-compatible" extension statement to indicate where non-
 backwards-compatible changes have occurred in the module revision
 history. If a revision entry in a module’s revision history includes
 the "rev:non-backwards-compatible" statement then that MUST be
 reflected in any YANG semantic version associated with that revision.
 However, the reverse does not necessarily hold, i.e., if the MAJOR
 version has been incremented it does not necessarily mean that a
 "rev:non-backwards-compatible" statement would be present.

3.5. Examples of the YANG Semver Label

3.5.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses the YANG Semver revision-
 label based on the rules defined in this document.

Clarke, et al. Expires 12 October 2023 [Page 12]

Internet-Draft YANG Semver April 2023

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";
 rev:revision-label-scheme "ysver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ysver"; }

 description
 "to be completed";

 revision 2017-08-30 {
 description "Backport ’wibble’ leaf";
 rev:revision-label 1.2.2_non_compatible;
 }

 revision 2017-07-30 {
 description "Rename ’baz’ to ’bar’";
 rev:revision-label 1.2.1_non_compatible;
 rev:non-backwards-compatible;
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 rev:revision-label 1.2.0;
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 rev:revision-label 1.1.0;
 }

 revision 2017-02-07 {
 description "First release version.";
 rev:revision-label 1.0.0;
 }

 // Note: YANG Semver rules do not apply to 0.X.Y labels.
 // The following pre-release revision statements would not
 // appear in any final published version of a module. They
 // are removed when the final version is published.
 // During the pre-release phase of development, only a
 // single one of these revision statements would appear

 // revision 2017-01-30 {
 // description "NBC changes to initial revision";
 // rev:revision-label 0.2.0;

Clarke, et al. Expires 12 October 2023 [Page 13]

Internet-Draft YANG Semver April 2023

 // rev:non-backwards-compatible; // optional
 // // (theoretically no
 // // ’previous released version’)
 // }

 // revision 2017-01-26 {
 // description "Initial module version";
 // rev:revision-label 0.1.0;
 // }

 //YANG module definition starts here
 }

3.5.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the YANG Semver revision
 label based on the rules defined in this document. Note: ’\’ line
 wrapping per [RFC8792] .

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "content-schema": {
 "module": "ietf-yang-packages@2022-03-04"
 },
 "timestamp": "2022-12-06T17:00:38Z",
 "description": ["Example of a Package \
 using YANG Semver"],
 "content-data": {
 "ietf-yang-packages:packages": {
 "package": [
 {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }
]
 }
 }
 }
 }

 Figure 1

Clarke, et al. Expires 12 October 2023 [Page 14]

Internet-Draft YANG Semver April 2023

4. Import Module by Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on a module or a derived revision of a module. The
 rev:revision-or-derived statement can specify either a revision date
 or a revision label. The YANG Semver revision-label value can be
 used as the argument to rev:revision-or-derived . When used as such,
 any module that contains exactly the same YANG semantic version in
 its revision history may be used to satisfy the import requirement.
 For example:

 import example-module {
 rev:revision-or-derived 3.0.0;
 }

 Note: the import lookup does not stop when a non-backward-compatible
 change is encountered. That is, if module B imports a module A at or
 derived from version 2.0.0, resolving that import will pass through a
 revision of module A with version "2.1.0_non_compatible" in order to
 determine if the present instance of module A derives from "2.0.0".

 If an import by revision-or-derived cannot locate the specified
 revision-label in a given module’s revision history, that import will
 fail. This is noted in the case of version gaps. That is, if a
 module’s history includes "1.0.0", "1.1.0", and "1.3.0", an import
 from revision-or-derived at "1.2.0" will be unable to locate the
 specified revision entry and thus the import cannot be satisfied.

5. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 Semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407] .

 Development of a brand new YANG module or submodule outside of the
 IETF that uses YANG Semver as its revision-label scheme SHOULD begin
 with a 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict SemVer rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the SemVer
 pre-release syntax instead with a 1 for the MAJOR version component.
 For example, an initial module or submodule revision-label might be
 either 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0
 MAJOR version component scheme, they MAY switch to the pre-release
 scheme with a MAJOR version component of 1 when the module or
 submodule is nearing initial release (e.g., a module’s or submodule’s
 revision label may transition from 0.3.0 to 1.0.0-beta.1 to indicate
 it is more mature and ready for testing).

Clarke, et al. Expires 12 October 2023 [Page 15]

Internet-Draft YANG Semver April 2023

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ or ’-’ and then one or
 more digits. These alphanumeric components will be used when
 deciding pre-release precedence. The following are examples of valid
 pre-release versions:

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

 When developing a new revision of an existing module or submodule
 using the YANG Semver revision-label scheme, the intended target
 semantic version MUST be used along with pre-release notation. For
 example, if a released module or submodule which has a current
 revision-label of 1.0.0 is being modified with the intent to make
 non-backwards-compatible changes, the first development MAJOR version
 component must be 2 with some pre-release notation such as -alpha.1,
 making the version 2.0.0-alpha.1. That said, every publicly
 available release of a module or submodule MUST have a unique YANG
 Semver revision-label (where a publicly available release is one that
 could be implemented by a vendor or consumed by an end user).
 Therefore, it may be prudent to include the year or year and month
 development began (e.g., 2.0.0-201907-alpha.1). As a module or
 submodule undergoes development, it is possible that the original
 intent changes. For example, a 1.0.0 version of a module or
 submodule that was destined to become 2.0.0 after a development cycle
 may have had a scope change such that the final version has no non-
 backwards-compatible changes and becomes 1.1.0 instead. This change
 is acceptable to make during the development phase so long as pre-
 release notation is present in both versions (e.g., 2.0.0-alpha.3
 becomes 1.1.0-alpha.4). However, on the next development cycle
 (after 1.1.0 is released), if again the new target release is 2.0.0,
 new pre-release components must be used such that every revision-
 label for a given module or submodule MUST be unique throughout its
 entire lifecycle (e.g., the first pre-release version might be
 2.0.0-202005-alpha.1 if keeping the same year and month notation
 mentioned above).

Clarke, et al. Expires 12 October 2023 [Page 16]

Internet-Draft YANG Semver April 2023

5.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a ratified module or submodule with revision-
 label 1.0.0 is initially intended to become 2.0.0 in its next
 ratified version, the scope of work may change such that the final
 version is 1.1.0. During the development cycle, the pre-release
 versions could move from 2.0.0-some-pre-release-tag to 1.1.0-some-
 pre-release-tag. This downwards changing of version numbers makes it
 difficult to evaluate semantic version rules between pre-release
 versions. However, taken independently, each pre-release version can
 be compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

5.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions for their revision-labels.

 Development of a new module or submodule within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the revision-label MUST use the
 target (i.e., intended) MAJOR and MINOR version components with a 0
 PATCH version component. If the intended ratified release will be
 non-backward-compatible with the current ratified release, the MINOR
 version component MUST be 0.

5.2.1. Guidelines for IETF Module Development

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version string, including the current
 document revision. For example, if a module or submodule which is
 currently released at version 1.0.0 is being revised to include non-
 backwards-compatible changes in draft-user-netmod-foo, its
 development revision-labels MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

Clarke, et al. Expires 12 October 2023 [Page 17]

Internet-Draft YANG Semver April 2023

 Some draft revisions may not include an update to the YANG modules or
 submodules contained in the draft. In that case, those modules or
 submodules that are not updated do not not require a change to their
 versions. Updates to the YANG Semver version MUST only be done when
 the revision of the module changes.

 See Appendix A for a detailed example of IETF pre-release versions.

5.2.2. Guidelines for Published IETF Modules

 For IETF YANG modules and submodules that have already been
 published, revision-labels MUST be retroactively applied to all
 existing revisions when the next new revision is created, starting at
 version "1.0.0" for the initial published revision, and then
 incrementing according to the YANG Semver version rules specified in
 Section 3.4 . For example, if a module or submodule started out in
 the pre-NMDA ([RFC8342]) world, and then had NMDA support added
 without removing any legacy "state" branches -- and you are looking
 to add additional new features -- a sensible choice for the target
 YANG Semver would be 1.2.0 (since 1.0.0 would have been the initial,
 pre-NMDA release, and 1.1.0 would have been the NMDA revision).

6. YANG Module

 This YANG module contains the typedef for the YANG semantic version
 and the identity to signal its use.

 <CODE BEGINS> file "ietf-yang-semver@2023-01-17.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix ysver;
 rev:revision-label-scheme "yang-semver";

 import ietf-yang-revisions {
 prefix rev;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>
 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

Clarke, et al. Expires 12 October 2023 [Page 18]

Internet-Draft YANG Semver April 2023

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>
 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed. update the rev:revision-label to "1.0.0".

 revision 2023-01-17 {
 rev:label "1.0.0-draft-ietf-netmod-yang-semver-10";
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Identities
 */

 identity yang-semver {
 base rev:revision-label-scheme-base;
 description
 "The revision-label scheme corresponds to the YANG Semver
 scheme which is defined by the pattern in the ’version’

Clarke, et al. Expires 12 October 2023 [Page 19]

Internet-Draft YANG Semver April 2023

 typedef below. The rules governing this revision-label
 scheme are defined in the reference for this identity.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Typedefs
 */

 typedef version {
 type rev:revision-label {
 pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
 + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
 }
 description
 "Represents a YANG semantic version. The rules governing the
 use of this revision label scheme are defined in the
 reference for this typedef.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

7. Contributors

 The following people made substantial contributions to this document:

 Bo Wu
 lana.wubo@huawei.com

 Jan Lindblad
 jlindbla@cisco.com

 Figure 2

8. Acknowledgments

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The team consists of the following members
 whom have worked on the YANG versioning project: Balazs Lengyel,
 Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason Sterne, Joe
 Clarke, Juergen Schoenwaelder, Mahesh Jethanandani, Michael
 (Wangzitao), Per Andersson, Qin Wu, Reshad Rahman, Tom Hill, and Rob
 Wilton.

Clarke, et al. Expires 12 October 2023 [Page 20]

Internet-Draft YANG Semver April 2023

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update] . We would like the thank
 Kevin D’Souza for his initial work in this problem space.

 Discussions on the use of SemVer for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver] . We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

 We would also like to thank Joseph Donahue from the SemVer.org
 project for his input on SemVer use and overall document readability.

9. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040] . The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242] . The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446] .

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 That said, the YANG module in this document does not define any
 schema nodes (i.e., nothing that can be read or written). It only
 defines a typedef and an identity. Therefore, there is no need to
 further protect any nodes with access control.

10. IANA Considerations

10.1. YANG Module Registrations

 This document requests IANA to register a URI in the "IETF XML
 Registry" [RFC3688] . Following the format in RFC 3688, the
 following registration is requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

Clarke, et al. Expires 12 October 2023 [Page 21]

Internet-Draft YANG Semver April 2023

 The following YANG module is requested to be registered in the "IANA
 Module Names" [RFC6020] . Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-semver module:

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: ysver

 Reference: [RFCXXXX]

10.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang] .

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning] ,
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver revision label for all new revisions, as defined in Section 3
 .

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 3.4 .

 Note: For IANA maintained YANG modules and submodules that have
 already been published, revision labels MUST be retroactively applied
 to all existing revisions when the next new revision is created,
 starting at version "1.0.0" for the initial published revision, and
 then incrementing according to the YANG Semver rules specified in
 Section 3.4 .

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible changes are made.

Clarke, et al. Expires 12 October 2023 [Page 22]

Internet-Draft YANG Semver April 2023

 Given that IANA maintained YANG modules are versioned with a linear
 history, it is anticipated that it should not be necessary to use the
 "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
 version element.

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-08, 12 January 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-module-versioning-08>.

11.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

Clarke, et al. Expires 12 October 2023 [Page 23]

Internet-Draft YANG Semver April 2023

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Andersson, P. and R. Wilton, "YANG Schema Comparison",
 Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
 schema-comparison-02, 14 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-02>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

Clarke, et al. Expires 12 October 2023 [Page 24]

Internet-Draft YANG Semver April 2023

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [SemVer] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 revision-label) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version lineage after adoption:

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

Clarke, et al. Expires 12 October 2023 [Page 25]

Internet-Draft YANG Semver April 2023

 At this point, the draft is ratified and becomes RFC12345 and the
 YANG module version becomes 1.0.0.

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-asmith-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision (track 1):

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00
 |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01

 In parallel with (track 2):

 1.1.0-draft-asmith-netmod-exmod-changes-00
 |
 1.1.0-draft-asmith-netmod-exmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in asmith’s draft as draft-ietf-netmod-exmod-changes. A
 single version lineage continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is ratified, and the new module version becomes 1.1.0.

Authors’ Addresses

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America
 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

Clarke, et al. Expires 12 October 2023 [Page 26]

Internet-Draft YANG Semver April 2023

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Graphiant
 Email: reshad@yahoo.com

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary
 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Clarke, et al. Expires 12 October 2023 [Page 27]

NETMOD Q. Ma

Internet-Draft Q. Wu

Intended status: Standards Track Huawei

Expires: 10 January 2024 B. Lengyel

 Ericsson

 H. Li

 HPE

 9 July 2023

 YANG Extension and Metadata Annotation for Immutable Flag

 draft-ma-netmod-immutable-flag-08

Abstract

 This document defines a way to formally document existing behavior,

 implemented by servers in production, on the immutability of some

 system configuration nodes, using a YANG "extension" and a YANG

 metadata annotation, both called "immutable", which are collectively

 used to flag which nodes are immutable.

 Clients may use "immutable" statements in the YANG, and annotations

 provided by the server, to know beforehand when certain otherwise

 valid configuration requests will cause the server to return an

 error.

 The immutable flag is descriptive, documenting existing behavior, not

 proscriptive, dictating server behavior.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 January 2024.

Ma, et al. Expires 10 January 2024 [Page 1]

Internet-Draft Immutable Flag July 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Terminology . 4

 1.2. Applicability . 5

 2. Solution Overview . 6

 3. Use of "immutable" Flag for Different Statements 6

 3.1. The "leaf" Statement 6

 3.2. The "leaf-list" Statement 7

 3.3. The "container" Statement 7

 3.4. The "list" Statement 7

 3.5. The "anydata" Statement 7

 3.6. The "anyxml" Statement 7

 4. Immutability of Interior Nodes 8

 5. "Immutable" YANG Extension 8

 5.1. Definition . 8

 6. "Immutable" Metadata Annotation 8

 6.1. Definition . 9

 6.2. "with-immutable" Parameter 9

 7. Interaction between Immutable Flag and NACM 10

 8. YANG Module . 10

 9. IANA Considerations . 13

 9.1. The "IETF XML" Registry 13

 9.2. The "YANG Module Names" Registry 13

 10. Security Considerations 14

 Acknowledgements . 14

 References . 14

 Normative References . 14

 Informative References . 15

 Appendix A. Detailed Use Cases 16

 A.1. UC1 - Modeling of server capabilities 16

 A.2. UC2 - HW based auto-configuration - Interface Example . . 16

 A.2.1. Error Response to Client Updating the Value of an

 Interface Type 17

Ma, et al. Expires 10 January 2024 [Page 2]

Internet-Draft Immutable Flag July 2023

 A.3. UC3 - Predefined Access control Rules 18

 A.4. UC4 - Declaring immutable system configuration from an

 LNE’s perspective . 19

 Appendix B. Existing implementations 19

 Appendix C. Changes between revisions 20

 Appendix D. Open Issues tracking 22

 Authors’ Addresses . 22

1. Introduction

 This document defines a way to formally document as a YANG extension

 or YANG metadata an existing model handling behavior that is already

 allowed in YANG and has been used by multiple standard organizations

 and vendors. It is the aim to create one single standard solution

 for documenting modification restrictions on data declared as

 configuration, instead of the multiple existing vendor and

 organization specific solutions. See Appendix B for existing

 implementations.

 YANG [RFC7950] is a data modeling language used to model both state

 and configuration data, based on the "config" statement. However,

 there exists some system configuration data that cannot be modified

 by the client (it is immutable), but still needs to be declared as

 "config true" to:

 * allow configuration of data nodes under immutable lists or

 containers;

 * place "when", "must" and "leafref" constraints between

 configuration and immutable data nodes.

 * ensure the existence of specific list entries that are provided

 and needed by the system, while additional list entries can be

 created, modified or deleted;

 Client attempts to override an immutable system configuration node

 are always rejected by the server [I-D.ietf-netmod-system-config].

 If the server knows that it will always reject the modification

 because it internally think it immutable, it should document this

 towards the clients in a machine-readable way.

 This document defines a way to formally document existing behavior,

 implemented by servers in production, on the immutability of some

 system configuration nodes, using a YANG "extension" [RFC7950] and a

 YANG metadata annotation [RFC7952], both called "immutable", which

 are collectively used to flag which nodes are immutable.

Ma, et al. Expires 10 January 2024 [Page 3]

Internet-Draft Immutable Flag July 2023

 The "immutable" YANG extension is used when the behavior is

 independent of instances and can be described at the schema-level,

 while the "immutable" metadata annotation is used when the behavior

 must be described at the YANG "list" or "leaf-list" instance level.

 Comment: Should the "immutable" metadata annotation also be returned

 for nodes described as immutable in the YANG schema?

 Immutability is an existing model handling practice. This document

 does not apply to the server which does not have any immutable system

 configuration. While in some cases it may be needed, it also has

 disadvantages, therefore it SHOULD be avoided wherever possible.

 The following is a list of already implemented and potential use

 cases.

 UC1 Modeling of server capabilities

 UC2 HW based auto-configuration

 UC3 Predefined Access control Rules

 UC4 Declaring immutable system configuration from an LNE’s

 perspective

 Appendix A describes the use cases in detail.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The following terms are defined in [RFC6241]:

 * configuration data

 The following terms are defined in [RFC7950]:

 * data node

 * leaf

 * leaf-list

 * container

Ma, et al. Expires 10 January 2024 [Page 4]

Internet-Draft Immutable Flag July 2023

 * list

 * anydata

 * anyxml

 * interior node

 * data tree

 The following terms are defined in [RFC8341]:

 * access operation

 * write access

 The following terms are defined in this document:

 immutable flag: A read-only state value the server provides to

 describe system data it considers immutable. In schema, the

 immutability of data nodes is conveyed via a YANG "extension"

 statement. In instance representations, the immutability of data

 nodes is conveyed via a YANG metadata annotation. Both the

 extension statement and the metadata annotation are called

 "immutable". Together, they are alternative ways to express the

 same behavior.

1.2. Applicability

 This document focuses on the configuration which can only be created,

 updated and deleted by the server, thus cannot be created, updated

 and deleted by the client.

 The "immutable" concept defined in this document only documents

 existing write access restrictions to writable datastores, given the

 client is never allowed to edit read-only datastores. The immutable

 annotation information is also visible even in read-only datastores

 like <system> (if exists), <intended> and <operational> when a "with-

 immutable" parameter is carried (see Section 6.2), however this only

 serves as descriptive information about the instance node itself, but

 has no effect on the handling of the read-only datastore.

 A particular data node or instance has the same immutability in all

 writable datastores. The immutability of data nodes is protocol and

 user independent. The immutability and configured value of an

 existing node must only change by software upgrade or hardware

 resource/license change.

Ma, et al. Expires 10 January 2024 [Page 5]

Internet-Draft Immutable Flag July 2023

2. Solution Overview

 Immutable configuration can only be created by the system regardless

 of the implementation of the system configuration datastore

 [I-D.ietf-netmod-system-config]. If the server implements <system>,

 immutable configuration is present in <system>. It may be updated or

 deleted depending on factors like software upgrade or hardware

 resources/license change. Immutable configuration does not affect

 the contents of <running> by default.

 A client may create/delete immutable nodes with same values as found

 in <system> (if exists) in read-write configuration datastore (e.g.,

 <running>), which merely mean making immutable nodes visible/

 invisible in read-write configuration datastore (e.g., <running>).

 If a client tries to override immutable nodes with different values

 from ones in <system> (if exists), an error is always returned. This

 document allows the existing immutable system nodes to be formally

 documented by YANG extension or metadata annotation rather than be

 written as plain text in the description statement.

 Servers reject client’s request for updating configuration data when

 they internally think it immutable. The error reporting is performed

 immediately at an <edit-config> operation time, regardless what the

 target configuration datastore is. For an example of an "invalid-

 value" error response, see Appendix A.2.1.

 Servers adding the immutable property which does not have any

 additional semantic meaning is discouraged. For example, a key leaf

 that is given a value and cannot be modified once a list entry is

 created.

 The "immutable" flag is intended to be descriptive.

3. Use of "immutable" Flag for Different Statements

 This section defines what the immutable flag means to the client for

 each YANG data node statement. Whilst this section describes

 immutability at the schema level, it applies equally to when the

 immutable flag is set via the metadata annotation on node instances.

 Throughout this section, the word "change" refers to create, update,

 and delete.

3.1. The "leaf" Statement

 When a leaf node is immutable, its value cannot change.

Ma, et al. Expires 10 January 2024 [Page 6]

Internet-Draft Immutable Flag July 2023

3.2. The "leaf-list" Statement

 When a leaf-list data node is immutable, its value cannot change.

 When the "immutable" YANG extension statement is used on a leaf-list

 data node, or if a leaf-list inherits immutability from an ancestor,

 it means that the leaf-list as a whole cannot change: entries cannot

 be added, removed, or reordered, in case the leaf-list is "ordered-by

 user".

3.3. The "container" Statement

 When a container data node is immutable, its instance cannot change,

 unless the immutability of its descendant node is toggled.

 By default, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 4).

3.4. The "list" Statement

 When a list data node is immutable, its instance cannot change,

 unless the immutability of its descendant node is toggled, per the

 description elsewhere in this section.

 By default, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 4). This statement is applicable

 only to the "immutable" YANG extension, as the "list" node does not

 itself appear in data trees.

3.5. The "anydata" Statement

 When an anydata data node is immutable, its instance cannot change.

 Additionally, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 4).

 Descendants for anydata data node is unknown at module design time,

 they cannot reset the immutability state with "immutable" YANG

 extension.

3.6. The "anyxml" Statement

 When an "anyxml" data node is immutable, its instance cannot change.

 Additionally, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 4).

 Descendants for anyxml data node is unknown at module design time,

 they cannot reset the immutability state with "immutable" YANG

 extension.

Ma, et al. Expires 10 January 2024 [Page 7]

Internet-Draft Immutable Flag July 2023

4. Immutability of Interior Nodes

 Immutability is a conceptual operational state value that is

 recursively applied to descendants, which may reset the immutability

 state as needed, thereby affecting their descendants. There is no

 limit to the number of times the immutability state may change in a

 data tree.

 For example, given the following application configuration XML

 snippets:

 <application im:immutable="true">

 <name>predefined-ftp</name>

 <protocol>ftp</protocol>

 <port-number im:immutable="false">69</port-number>

 </application>

 The list entry named "predefined-ftp" is immutable="true", but its

 child node "port-number" has the immutable="false" (thus the client

 can override this value). The other child node (e.g., "protocol")

 not specifying its immutability explicitly inherits immutability from

 its parent node thus is also immutable="true".

5. "Immutable" YANG Extension

5.1. Definition

 If servers always reject client modification attempts to some data

 node that they internally think immutable and irrelevant to its

 instance data, an "immutable" YANG extension can be used to formally

 indicate to the clients.

 The "immutable" YANG extension can be a substatement to a "config

 true" leaf, leaf-list, container, list, anydata or anyxml statement.

 It has no effect if used as a substatement to a "config false" node,

 but can be allowed anyway.

 The "immutable" YANG extension defines an argument statement named

 "value" which is a boolean type to indicate that whether the node is

 immutable or not. If the "immutable" YANG extension is not specified

 for a particular data node, the default immutability is the same as

 that of its parent node. The immutability for a top-level data node

 is "false" by default.

6. "Immutable" Metadata Annotation

Ma, et al. Expires 10 January 2024 [Page 8]

Internet-Draft Immutable Flag July 2023

6.1. Definition

 If servers always reject clients modification to some particular

 instance that they internally think immutable, an "immutable"

 metadata annotation can be used to formally indicate to the clients.

 The "immutable" metadata annotation takes as an value which is a

 boolean type, it is not returned unless a client explicitly requests

 through a "with-immutable" parameter (see Section 6.2). If the

 "immutable" metadata annotation for data node instances is not

 specified, the default "immutable" value is the same as the

 immutability of its parent node in the data tree. The immutable

 metadata annotation value for a top-level instance node is false if

 not specified.

 Note that "immutable" metadata annotation is used to annotate data

 node instances. A list may have multiple entries/instances in the

 data tree, "immutable" can annotate some of the instances as read-

 only, while others are read-write.

6.2. "with-immutable" Parameter

 The YANG model defined in this document (see Section 8) augments the

 <get-config>, <get> operation defined in RFC 6241, and the <get-data>

 operation defined in RFC 8526 with a new parameter named "with-

 immutable". When this parameter is present, it requests that the

 server includes "immutable" metadata annotations in its response.

 This parameter may be used for read-only configuration datastores,

 e.g., <system> (if exists), <intended> and <operational>, but the

 "immutable" metadata annotation returned indicates the immutability

 towards read-write configuration datastores, e.g., <startup>,

 <candidate> and <running>. If the "immutable" metadata annotation

 for returned child nodes are omitted, it has the same immutability as

 its parent node. The immutability of top hierarchy of returned nodes

 is false by default.

 Note that "immutable" metadata annotation is not included in a

 response unless a client explicitly requests them with a "with-

 immutable" parameter.

Ma, et al. Expires 10 January 2024 [Page 9]

Internet-Draft Immutable Flag July 2023

7. Interaction between Immutable Flag and NACM

 The server rejects an operation request due to immutability when it

 tries to perform the operation on the request data. It happens after

 any access control processing, if the Network Configuration Access

 Control Model (NACM) [RFC8341]is implemented on a server. For

 example, if an operation requests to override an immutable

 configuration data, but the server checks the user is not authorized

 to perform the requested access operation on the request data, the

 request is rejected with an "access-denied" error.

8. YANG Module

 <CODE BEGINS>

 file="ietf-immutable@2023-07-09.yang"

 //RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 import ietf-netconf {

 prefix nc;

 reference

 "RFC 6241: Network Configuration Protocol (NETCONF)";

 }

 import ietf-netconf-nmda {

 prefix ncds;

 reference

 "RFC 8526: NETCONF Extensions to Support the Network

 Management Datastore Architecture";

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

Ma, et al. Expires 10 January 2024 [Page 10]

Internet-Draft Immutable Flag July 2023

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a YANG extension and a metadata annotation

 both called ’immutable’, to allow the server to formally

 document existing behavior on the mutability of some

 configuration nodes. Clients may use ’immutable’ extension

 statements in the YANG, and annotations provided by the server

 to know beforehand when certain otherwise valid configuration

 requests will cause the server to return an error.

 Copyright (c) 2023 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2023-05-25 {

 description

 "Initial revision.";

 // RFC Ed.: replace XXXX and remove this comment

 reference

 "RFC XXXX: YANG Extension and Metadata Annotation for

 Immutable Flag";

 }

 extension immutable {

 argument value;

 description

Ma, et al. Expires 10 January 2024 [Page 11]

Internet-Draft Immutable Flag July 2023

 "If servers always reject client modification attempts to

 some data node that can only be created, modified and

 deleted by the device itself, an ’immutable’ YANG extension

 can be used to formally indicate to the client.

 The statement MUST only be a substatement to a ’config true’

 leaf, leaf-list, container, list, anydata or anyxml

 statement. Zero or one immutable statement per parent

 statement is allowed.

 No substatements are allowed.

 The argument of the ’immutable’ statement defines the value,

 indicating whether the node is immutable or not.

 Adding immutable of an existing immutable statement

 is non-backwards compatible changes.

 Other changes to immutable are backwards compatible.";

 }

 md:annotation immutable {

 type boolean;

 description

 "If servers always reject clients modification to some

 particular instance that can only be created, modified and

 deleted by the device itself, an ’immutable’ metadata

 annotation can be used to formally indicate to the clients.

 The ’immutable’ annotation indicates the immutability of an

 instantiated data node.

 The ’immutable’ metadata annotation takes as a value ’true’

 or ’false’. If the ’immutable’ metadata annotation for data

 node instances is not specified, the default value is false.

 Explicitly annotating instances as immutable=true has the

 same effect as not specifying this value.";

 }

 grouping with-immutable-grouping {

 description

 "define the with-immutable grouping.";

 leaf with-immutable {

 type empty;

 description

 "If this parameter is present, the server will return the

 ’immutable’ annotation for configuration that it

 internally thinks it immutable. When present, this

 parameter allows the server to formally document existing

 behavior on the mutability of some configuration nodes.";

Ma, et al. Expires 10 January 2024 [Page 12]

Internet-Draft Immutable Flag July 2023

 }

 }

 augment "/ncds:get-data/ncds:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get-data operation.";

 uses with-immutable-grouping;

 }

 augment "/nc:get-config/nc:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get-config operation.";

 uses with-immutable-grouping;

 }

 augment "/nc:get/nc:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get operation.";

 uses with-immutable-grouping;

 }

 }

 <CODE ENDS>

9. IANA Considerations

9.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

9.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020].

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX

 // RFC Ed.: replace XXXX and remove this comment

Ma, et al. Expires 10 January 2024 [Page 13]

Internet-Draft Immutable Flag July 2023

10. Security Considerations

 The YANG module specified in this document defines a YANG extension

 and a metadata Annotation. These can be used to further restrict

 write access but cannot be used to extend access rights.

 This document does not define any protocol-accessible data nodes.

 Since immutable information is tied to applied configuration values,

 it is only accessible to clients that have the permissions to read

 the applied configuration values.

 The security considerations for the Defining and Using Metadata with

 YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

 defined in this document.

Acknowledgements

 Thanks to Kent Watsen, Andy Bierman, Robert Wilton, Jan Lindblad,

 Reshad Rahman, Anthony Somerset, Lou Berger, Joe Clarke, Scott

 Mansfield for reviewing, and providing important input to, this

 document.

References

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

Ma, et al. Expires 10 January 2024 [Page 14]

Internet-Draft Immutable Flag July 2023

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",

 RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

Informative References

 [I-D.ietf-netmod-system-config]

 Ma, Q., Wu, Q., and C. Feng, "System-defined

 Configuration", Work in Progress, Internet-Draft, draft-

 ietf-netmod-system-config-02, 4 July 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 system-config-02>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8530] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X.

 Liu, "YANG Model for Logical Network Elements", RFC 8530,

 DOI 10.17487/RFC8530, March 2019,

 <https://www.rfc-editor.org/info/rfc8530>.

 [TR-531] ONF, "UML to YANG Mapping Guidelines,

 <https://wiki.opennetworking.org/download/

 attachments/376340494/Draft_TR-531_UML-YANG_Mapping_Gdls_v

 1.1.03.docx?version=5&modificationDate=1675432243513&api=v

 2>", February 2023.

 [TS28.623] 3GPP, "Telecommunication management; Generic Network

 Resource Model (NRM) Integration Reference Point (IRP);

 Solution Set (SS) definitions,

 <https://www.3gpp.org/ftp/Specs/

 archive/28_series/28.623/28623-i02.zip>".

 [TS32.156] 3GPP, "Telecommunication management; Fixed Mobile

 Convergence (FMC) Model repertoire,

 <https://www.3gpp.org/ftp/Specs/

 archive/32_series/32.156/32156-h10.zip>".

Ma, et al. Expires 10 January 2024 [Page 15]

Internet-Draft Immutable Flag July 2023

Appendix A. Detailed Use Cases

A.1. UC1 - Modeling of server capabilities

 System capabilities might be represented as system-defined data nodes

 in the model. Configurable data nodes might need constraints

 specified as "when", "must" or "path" statements to ensure that

 configuration is set according to the system’s capabilities. E.g.,

 * A timer can support the values 1,5,8 seconds. This is defined in

 the leaf-list ’supported-timer-values’.

 * When the configurable ’interface-timer’ leaf is set, it should be

 ensured that one of the supported values is used. The natural

 solution would be to make the ’interface-timer’ a leaf-ref

 pointing at the ’supported-timer-values’.

 However, this is not possible as ’supported-timer-values’ must be

 read-only thus config=false while ’interface-timer’ must be writable

 thus config=true. According to the rules of YANG it is not allowed

 to put a constraint between config true and false data nodes.

 The solution is that the supported-timer-values data node in the YANG

 Model shall be defined as "config true" and shall also be marked with

 the "immutable" extension making it unchangable. After this the

 ’interface-timer’ shall be defined as a leaf-ref pointing at the

 ’supported-timer-values’.

A.2. UC2 - HW based auto-configuration - Interface Example

 This section shows how to use immutable YANG extension to mark some

 data node as immutable.

 When an interface is physically present, the system will create an

 interface entry automatically with valid name and type values in

 <system> (if exists, see [I-D.ietf-netmod-system-config]). The

 system-generated data is dependent on and must represent the HW

 present, and as a consequence must not be changed by the client. The

 data is modelled as "config true" and should be marked as immutable.

 Seemingly an alternative would be to model the list and these leaves

 as "config false", but that does not work because:

 * The list cannot be marked as "config false", because it needs to

 contain configurable child nodes, e.g., ip-address or enabled;

 * The key leaf (name) cannot be marked as "config false" as the list

 itself is config true;

Ma, et al. Expires 10 January 2024 [Page 16]

Internet-Draft Immutable Flag July 2023

 * The type cannot be marked "config false", because we MAY need to

 reference the type to make different configuration nodes

 conditionally available.

 The immutability of the data is the same for all interface instances,

 thus following fragment of a fictional interface module including an

 "immutable" YANG extension can be used:

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 im:immutable;

 type identityref {

 base ianaift:iana-interface-type;

 }

 mandatory true;

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

 Note that the "name" leaf is defined as a list key which can never

 been modified for a particular list entry, there is no need to mark

 "name" as immutable.

A.2.1. Error Response to Client Updating the Value of an Interface Type

 This section shows an example of an error response due to the client

 modifying an immutable configuration.

 Assume the system creates an interface entry named "eth0" given that

 an inerface is inserted into the device. If a client tries to change

 the type of an interface to a value that doesn’t match the real type

 of the interface used by the system, the request will be rejected by

 the server:

Ma, et al. Expires 10 January 2024 [Page 17]

Internet-Draft Immutable Flag July 2023

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

 </rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

 </rpc-reply>

A.3. UC3 - Predefined Access control Rules

 Setting up detailed rules for access control is a complex task. (see

 [RFC8341]) A vendor may provide an initial, predefined set of groups

 and related access control rules so that the customer can use access

 control out-of-the-box. The customer may continue using these

 predefined rules or may add his own groups and rules. The predefined

 groups shall not be removed or altered guaranteeing that access

 control remains usable and basic functions e.g., a system-security-

 administrator are always available.

 The system needs to protect the predefined groups and rules, however,

 the list "groups" or the list "rule-list" cannot be marked as

 config=false or with the "immutable" extension in the YANG model

 because that would prevent the customer adding new entries. Still it

Ma, et al. Expires 10 January 2024 [Page 18]

Internet-Draft Immutable Flag July 2023

 would be good to notify the client in a machine readable way that the

 predefined entries cannot be modified. When the client retrieves

 access control data the immutable="true" metadata annotation should

 be used to indicate to the client that the predefined groups and

 rules cannot be modified.

A.4. UC4 - Declaring immutable system configuration from an LNE’s

 perspective

 An LNE (logical network element) is an independently managed virtual

 network device made up of resources allocated to it from its host or

 parent network device [RFC8530]. The host device may allocate some

 resources to an LNE, which from an LNE’s perspective is provided by

 the system and may not be modifiable.

 For example, a host may allocate an interface to an LNE with a valid

 MTU value as its management interface, so that the allocated

 interface should then be accessible as the LNE-specific instance of

 the interface model. The assigned MTU value is system-created and

 immutable from the context of the LNE.

Appendix B. Existing implementations

 There are already a number of full or partial implementations of

 immutability.

 3GPP TS 32.156 [TS32.156] and 28.623 [TS28.623]: Requirements and

 a partial solution

 ITU-T using ONF TR-531[TR-531] concept on information model level

 but no YANG representation.

 Ericsson: requirements and solution

 YumaPro: requirements and solution

 Nokia: partial requirements and solution

 Huawei: partial requirements and solution

 Cisco using the concept at least in some YANG modules

 Junos OS provides a hidden and immutable configuration group

 called junos-defaults

Ma, et al. Expires 10 January 2024 [Page 19]

Internet-Draft Immutable Flag July 2023

Appendix C. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v06 - v07

 * Use a Boolean type for the immutable value in YANG extension and

 metadata annotation

 * Define a "with-immutable" parameter and state that immutable

 metadata annotation is not included in a response unless a client

 explicitly requests them with a "with-immutable" parameter

 * reword the abstract and related introduction section to highlight

 immutable flag is descriptive

 * Add a new section to define immutability of interior nodes, and

 merge with "Inheritance of Immutable configuration" section

 * Add a new section to define what the immutable flag means for each

 YANG data node

 * Define the "immutable flag" term.

 * Add an item in the open issues tracking: Should the "immutable"

 metadata annotation also be returned for nodes described as

 immutable in the YANG schema so that there is a single source of

 truth?

 v05 - v06

 * Remove immutable BGP AS number case

 * Fix nits

 v04 - v05

 * Emphasized that the proposal tries to formally document existing

 allowed behavior

 * Reword the abstract and introduction sections;

 * Restructure the document;

 * Simplified the interface example in Appendix;

 * Add immutable BGP AS number and peer-type configuration example.

Ma, et al. Expires 10 January 2024 [Page 20]

Internet-Draft Immutable Flag July 2023

 * Added temporary section in Appendix B about list of existing non-

 standard solutions

 * Clarified inheritance of immutability

 * Clarified that this draft is not dependent on the existence of the

 <system> datastore.

 v03 - v04

 * Clarify how immutable flag interacts with NACM mechanism.

 v02 - v03

 * rephrase and avoid using "server MUST reject" statement, and try

 to clarify that this documents aims to provide visibility into

 existing immutable behavior;

 * Add a new section to discuss the inheritance of immutability;

 * Clarify that deletion to an immutable node in <running> which is

 instantiated in <system> and copied into <running> should always

 be allowed;

 * Clarify that write access restriction due to general YANG rules

 has no need to be marked as immutable.

 * Add an new section named "Acknowledgements";

 * editoral changes.

 v01 - v02

 * clarify the relation between the creation/deletion of the

 immutable data node with its parent data node;

 * Add a "TODO" comment about the inheritance of the immutable

 property;

 * Define that the server should reject write attempt to the

 immutable data node at an <edit-config> operation time, rather

 than waiting until a <commit> or <validate> operation takes place;

 v00 - v01

 * Added immutable extension

 * Added new use-cases for immutable extension and annotation

Ma, et al. Expires 10 January 2024 [Page 21]

Internet-Draft Immutable Flag July 2023

 * Added requirement that an update that means no effective change

 should always be allowed

 * Added clarification that immutable is only applied to read-write

 datastore

 * Narrowed the applied scope of metadata annotation to list/leaf-

 list instances

Appendix D. Open Issues tracking

 * Should the "immutable" metadata annotation also be returned for

 nodes described as immutable in the YANG schema so that there is a

 single source of truth?

Authors’ Addresses

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: maqiufang1@huawei.com

 Qin Wu

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: bill.wu@huawei.com

 Balazs Lengyel

 Ericsson

 Email: balazs.lengyel@ericsson.com

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Ma, et al. Expires 10 January 2024 [Page 22]

	draft-boucadair-netmod-rfc8407bis-01
	draft-ietf-netmod-acl-extensions-02
	draft-ietf-netmod-node-tags-10
	draft-ietf-netmod-system-config-02
	draft-ietf-netmod-yang-module-versioning-09
	draft-ietf-netmod-yang-schema-comparison-02
	draft-ietf-netmod-yang-semver-11
	draft-ma-netmod-immutable-flag-08

