IPv6 Neighbor Discovery Prefix Registration

draft-ietf-6lo-prefix-registration

Pascal Thubert

IETF 117

San Francisco
6LoWPAN ND (IPv6 Stateful Address Autoconfiguration)

RFC 6775 (original 6LoWPAN ND)
Defines ARO for registration and DAD operations for stateful AAC

RFC 8505 (Issued 11/2018)
The protocol agnostic registration for ULA/GUA for proxy ND and routing services
Analogous to a Wi-Fi association but at Layer 3: a deterministic and query-able state for all addresses

RFC 8929 (Issued 11/2020)
Federates 6lo meshes over a high-speed backbone
ND proxy analogous to Wi-Fi bridging but at Layer 3

RFC 8928 (Issued 11/2020)
Protects addresses against theft (Crypto ID in registration)

draft-ietf-6lo-multicast-registration
Extends RFC 8505 for multicast and anycast

draft-thubert-6lo-unicast-lookup
Provides a 6LBR on the backbone to speed up DAD and lookup
Coexistence with classical ND

draft-ietf-6lo-prefix-registration
Extends RFC 8505 for prefixes
Let it be for prefixes!

• Hosts may own prefixes -> and routers may connect to prefixes
 • Network in Node / recursive networking
 • Kubernetes / Private IPv4 realms
 • Directly connected (no routing)
Registering a Prefix

SGP – agnostic UNI interface between prefix owner and router
Overload Status field with PLEN in NS message
R flag to redistribute in SGP
F flag to signal source vs destination matching. Useful?
But field getting saturated
Extending the P field

- P is a 2-bits field in EARO, DAR, and RTO
- Defined the Multicast Address Registration draft

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Registration for a Unicast Address</td>
<td>mcast RFC</td>
</tr>
<tr>
<td>01</td>
<td>Registration for a Multicast Address</td>
<td>mcast RFC</td>
</tr>
<tr>
<td>10</td>
<td>Registration for an Anycast Address</td>
<td>mcast RFC</td>
</tr>
<tr>
<td>11</td>
<td>Unassigned</td>
<td>mcast RFC</td>
</tr>
<tr>
<td>11</td>
<td>Registration for a prefix</td>
<td>This RFC</td>
</tr>
</tbody>
</table>
P = 3: prefix

Injecting Route

NS (EARO with plen in status field)

NS (EARO with R not set)
What becomes of DAD?

Need to consider prefix aggregation and nesting

• Provisioned Mobile Networks should be unique
• Auto-allocation?
NS (target = IPv6 address, EARO (ROVR=Crypto-ID PoO))

NA (EARO(status=Validation Requested), Nonce)

NS (EARO, CIPO*, Nonce and NDPSO**)
Provision IPv4 tenant-global subnet 10.1.0.0/28

Provision IPv6 prefix 2001:db8:1::/96 for subnet 10.1.0.0/28 in tenant VRF

NS EARO (P=3, R=1 lifetime, sequence, PoO)

NA(EARO, status = 0)

IPv6 address encapsulation

vSwitch

Container

Server

6LR

ToR (leaf)

6LBR

MS/MR L-B DNS

IPAM

Ethernet

Fabric

Provision IPv6 prefix 2001:db8:1::/96 for subnet 10.1.0.0/28 in tenant VRF

NS EARO (P=3, R=1 lifetime, sequence, PoO)

NA(EARO, status = 0)

IPv6 address encapsulation
Could do’s

• Adding stub prefix advertisement vs. host today
 • Indicate prefix type e.g., a /96 to embed an IPv4 address
 • Proof of ownership (PoO) per RFC 8928

• Adding policy / ACLs
 • Signal partial micro-segmentation (offload), who can talk to me

• Adding preference to influence load balancing
 • worker capacity (clusters / containers)
 • Access bandwidth /
 • multihoming / preferred interface / anycast

• Tenant ID / VRF ID / RPL instanceID
 • Route tags, RH
Thanks!

Questions?
Redistributing RFC 8505 in routing?

• Already done for host routes with the “R” flag
 • e.g., RFC 9010 into RPL, or even RFC 8929 into IPv6 ND
 • Also draft-thubert-bess-secure-evpn-mac-signaling using BGP, or RIFT
 • Provides a host / router interface that is agnostic to the IGP beyond the router
Multi-link Subnet Routing (non-storing mode)

Parent is default GW, propagates root PIO (L-bit off)
Parent Address in the PIO (with R bit)
RPL Router autoconfigures Address from parent PIO
RPL Router advertises Address via Parent to Root
Root recursively builds a Routing Header back

C:
::/0 via A::B
A::B connected
A::C self
A:: ~onlink

Target A::C via Transit A::B

B:
::/0 via A::A
A::A connected
A::B self
A:: ~onlink

D:
::/0 via A::B
A::B connected
A::D self
A:: ~onlink

A: (root)
A::A self
A::B connected
A::C via A::B
A::D via A::B
A:: ~onlink

A::C via A::B connected
6LR advertises A:: in RAs
6LN autoconfigures A::L
6LN registers A::L with « R » flag set
6LR injects the address as external host route in RPL

C:
::/0 via A::B
A::B connected
A::C self
A:: ~onlink

Target A::L via Transit A::C (Ext)

A: (root)
A::A self
A::B connected
A::C via A::B
A::L via A::C
A::D via A::B
A:: ~onlink

A::L via A::C via A::B connected
Owned prefix routing (non-storing mode)

Parent is default GW, advertizes owned PIO (L bit on)
RPL Router autoconfigures Address from parent PIO
RPL Router advertises Prefix via Address to Root
Root recursively builds a Routing Header back
Owned prefix routing (non-storing mode)

C::L is reachable but L:: is not
Missing equivalent of RFC 8505/9010 for prefixes

Target C::/ via Transit B::C

A: (root)
A:: connected
B:: via A::B
C:: via B::C
D:: via B::D

L:: unreachable
C::L via B::C via A::B connected
Non LLN (SNAC) Use case 1: Shared Link

1) Register P2
2) Route via 6LR2
3) Redirect P2::g
Non LLN (SNAC) Use case 2: Hub and Stubs

1) Register P2
2) Inject P2
3) Route via 6LR2