Instruction Set

Extension Policy
draft-thaler-bpf-isa

Dave Thaler <dthaler@microsoft.com>



WG Charter

* “The BPF working group is initially tasked with ... creating a clear
process for extensions, ...”

 Discussed on list in thread “[Bpf] Instruction set extension policy”



Extensions via delta docs, not replacements

* More instructions will be added over time.
* Eventual inclusion in an RFC would be good.

* Propose RFC per extension (set of additions)
* Need not Obsolete (or even Update) original ISA document

e But don’t want to make additions wait for an RFC

* Proposal: allow referencing a non-RFC (e.g., Linux kernel tree file) in
the meantime to get code points



Where should registry(s) be?

a) IANA
b) Filesin Linux kernel tree

Policy for allocation is mostly orthogonal to where registry resides



Menu of IANA policies in RFC 8126

* Private Use

* Experimental Use

e Hierarchical Allocation
* First Come First Served
* Expert Review
 Specification Required
* RFC Required

* |ETF Review

e Standards Action

* |ESG Approval



URI Schemes precedent

e https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

Range I] Registration Procedures I
Permanent Expert Review

Provisional First Come First Served
Historical Expert Review

* URI schemes do NOT divide the space by category
e Standardization can reclassify a scheme from provisional to permanent

 RFC 8124 section 4.13 on Provisional Registrations:

« “...If your registry does not have a practical limit on codepoints, perhaps adding the
option for provisional registrations might be right for that registry as well.”

IETF 117 - BPF WG


https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

Proposed policies for ISA registration

 Historical: Specification required
* Example: legacy BPF packet access instructions (deprecated)

* Permanent: Standards action
 Example: everything else in instruction-set.rst

* Provisional: Specification required



Option 1: Multiple key fields for BPF instructions

* BPF instructions are identified by (opcode, src, imm, offset) tuple
 Where src, imm can be wildcards

Examples:
mmm
0x07 Ox0 any dst +=imm

OxOf any  0x00 0 dst += src

0x30 any  0x00 1 dst = (src !=0) ? (dsts/src) : 0

IETF 117 - BPF WG 8



Option 2: Mutiple tables

* BPF opcode table
* Separate table per opcode with multiple instructions

Opcodes: 64-bit immediate instructions:
src_|descripton
Ox17 dst -=imm Ox0 dst=imm64
0x18 See 64-bit immediate Ox1 dst=map_by fd(imm)
instructions registry O0x2 dst=mva(map_by fd(imm)) + next_imm

Ox1f dst -= src

IETF 117 - BPF WG 9



Existing instructions: are all mandatory?

* Immediate instructions for maps & variables (opcode 0x18)
* Atomic instructions (opcode 0xdb)

* Call local

e Call by BTF ID

* Some runtimes don’t yet support the above categories
e Should we define one or more of them as if it were an “extension”?



Questions?

 https://github.com/ietf-wg-bpf/ebpf-docs/pull/33/files
* Contains IANA considerations text posted to mailing list

IETF 117 - BPF WG

11


https://github.com/ietf-wg-bpf/ebpf-docs/pull/33/files

	Slide 1: Instruction Set Extension Policy draft-thaler-bpf-isa
	Slide 2: WG Charter
	Slide 3: Extensions via delta docs, not replacements
	Slide 4: Where should registry(s) be?
	Slide 5: Menu of IANA policies in RFC 8126
	Slide 6: URI Schemes precedent
	Slide 7: Proposed policies for ISA registration
	Slide 8: Option 1: Multiple key fields for BPF instructions
	Slide 9: Option 2: Mutiple tables
	Slide 10: Existing instructions: are all mandatory?
	Slide 11: Questions?

