Analysis for the Differences Between Standard Congestion Control Schemes
draft-nishida-ccwg-standard-cc-analysis-01

Yoshifumi Nishida
nsd+ietf@gmail.com
Background

• Congestion Control standards should provide consistent guidelines, shouldn’t contradict
 • Also, they should be transport protocol agnostic in general

• Analyzing the impacts of Congestion Controls on the Internet won’t be easy
 • It would require long term analysis
 • Having a reference for several checking points could be useful
What’s in this draft?

• A list for differences on certain topics in CC standards
 • TCP Reno(RFC5681), QUIC Reno(RFC9002), CUBIC(RFC9438)

• Difference between TCP Reno and QUIC Reno
 • Ideally, TCP Reno and QUIC Reno should not be different with regard to aggressiveness

• Difference between Reno and CUBIC in terms of fairness
 • Ideally, Reno and CUBIC should coexist ‘mostly’ fairly
 • It’s fine CUBIC archives better performance, but shouldn’t push away Reno
Differences between TCP and QUIC Reno (1)

• **Initial Window**
 - RFC5681 .. Up to 4 segments or 4380 bytes
 - RFC6928 allows TCP connections to use up to 10 segments or 14600 bytes, but it's an experimental.
 - RFC9002 .. Up to 10 segments or 14720 bytes

• **Minimum RTO**
 - RFC6928 .. 1 sec
 - RFC9002 .. No minimum RTO

• **Loss Window**
 - RFC5681 .. 1 Segment
 - RFC9002 .. 2 Segments
Differences between TCP and QUIC Reno (2)

• Window Growth in Slow Start
 • RFC9002 .. cwnd += number_of_acked_bytes
 • RFC5681 .. cwnd += min(number_of_acked_bytes, 1 SMSS)
 • Increases at most 1 SMSS by a single ACK
 • It mentions RFC3465, but it’s not recommended to use it.
 • Also, RFC3465 is experimental, although 9002 is more aggressive than RFC3465 as there is no L factor

• Slow Start Threshold After Packet loss
 • RFC9002 .. half value of congestion window when packet loss is detected
 • RFC5681 .. half value of flight size instead of congestion window
 • Also, RFC5681 basically prohibits to use congestion window here
Differences between Reno and CUBIC

• Multiplicative Window Decrease Factor
 • RFC5681 .. Use 0.5
 • RFC9438 .. Use 0.7
 • 0.7 might not be too aggressive, but might not be fair with RFC5681

• Reno-Friendly model in CUBIC aims to mitigate the fairness issue between Reno and CUBIC
 • However, this model might need further analysis
 • Detailed explanation is described in the draft
Goals of this document

• Published as an Informational RFC for a reference

• Clarify differences between congestion control standards
 • They should provide the consistent guidelines to avoid conflicts
 • Initiate discussions for the next steps

• Could be used as a reference for future analysis on the impacts of congestion controls on the Internet
Appendix
Is Reno-Friendly Model in CUBIC a valid model?

• If this model was designed to make CUBIC to be fair with Reno
 • Reno uses AIMD(1, 0.5) while CUBIC uses AIMD(0.529, 0.7) to be compatible with Reno
 • Green and Orange parts should have the areas of the same size
 • But, this presumes that both have the same congestion epoch, which might not be always true
 • Further analysis might be required