OSCORE-capable Proxies

draft-tiloca-core-oscore-capable-proxies-07

Marco Tiloca, RISE
Rikard Höglund, RISE

IETF 117 Meeting – San Francisco – July 25th, 2023
Recap

› A CoAP proxy (P) can be used between client (C) and server (S)
 – A security association might be required between C and P --- use cases in next slides

› Good to use OSCORE between C and P
 – Especially, but not only, if C and S already use OSCORE end-to-end

› This is not defined and not admitted in OSCORE (RFC 8613)
 – C and S are the only considered “OSCORE endpoints”
 – It is forbidden to double-protect a message, i.e., both over C ↔ S and over C ↔ P

› This started as an Appendix of draft-tiloca-core-groupcomm-proxy
 – Agreed at IETF 110 [1] and at the June 2021 CoRE interim [2] to have a separate draft

Contribution

1. Define the use of OSCORE in a communication leg including a proxy
 › Between origin client/server and a proxy; or between two proxies in a chain
 › Not only an origin client/server, but also an intermediary can be an “OSCORE endpoint”

2. Explicitly admit nested OSCORE protection – “OSCORE-in-OSCORE”
 – E.g., first protect end-to-end over C ↔ S, then further protect the result over C ↔ P
 – Typically, at most 2 OSCORE “layers” for the same message
 › 1 end-to-end + 1 between two adjacent hops
 – Possible to seamlessly apply 2 or more OSCORE layers to the same message

› Focus on OSCORE, but the same applies “as is” to Group OSCORE
Several use cases

› Section 2.1, CoAP group communication through a proxy [3]
 – The proxy identifies the client before forwarding

› Section 2.2, Observe multicast notifications with Group OSCORE [4]
 – The client securely provides the Ticket Request to the proxy

› Sections 2.3 and 2.4, OMA Lightweight Machine-to-Machine (LwM2M)
 – The LwM2M Client uses the LwM2M Server as proxy towards External Application Servers
 – The LwM2M Server uses the LwM2M Gateway as reverse proxy towards External End Devices

› Further use cases are listed in Section 2.5
 – Transport indication through trusted proxies – draft-ietf-core-transport-indication
 – CoAP performance measurements involving on-path probes – draft-ietf-core-coap-pm
 – EST over OSCORE through a CoAP-to-HTTP proxy – draft-ietf-ace-coap-est-oscore
 – OSCORE-protected “onion forwarding”, a la TOR – draft-amsuess-t2trg-onion-coap
 – Proxies as entry point to a firewalled network

Message processing

› **Stable and well defined**
 – No need for an explicit signaling method to guide the message processing
 – High-level general algorithm, fitting a client, proxy or server as a message processor

› **Dedicated Section 3.2-3.5 for each message and direction**
 – Outgoing request, incoming request (most delicate), outgoing response, incoming response

› **Recent clarifications suggested by Christian (already in version -06)**
 – A proxy performs authorization checks, before forwarding an incoming request
 – For example, based on the OSCORE Security Context locally used for decryption
Processing an incoming request

Incoming Request
- Are there proxy-related options?
 - Yes: Is there the Proxy-Uri Option?
 - Yes: Are there the Proxy-Scheme and Uri-Host/Uri-Port Options?
 - Yes: Is forwarding this request an authorized operation?
 - Yes: Return 4.01
 - No: Consume the proxy-related options and forward
 - No: Return 4.01
 - No: Return 4.01
 - No: Is there an OSCORE Option?
 - No: Is there an URI-Path Options?
 - Yes: Deliver to the application
 - No: Decrypt
 - Yes: Are there the indicated resource for proxying?
 - Yes: Consume; OR decrypt and repeat
 - No: END

Forward-proxying
- Are there the Proxy-Scheme and Uri-Host/Uri-Port Options?
 - Yes: Is forwarding this request an authorized operation?
 - Yes: Consume the proxy-related options and forward
 - No: Return 4.01
 - No: Return 4.01

Reverse-proxying
- There are URI-Path Options without Proxy-Scheme
 - Determine if proxying or not
 - Proxying
 - No: END

Note: additional error handling is not shown for simplicity
Recent updates (already in v -06)

- OSCORE protection of CoAP options in outgoing messages
 - If a CoAP option is originally defined as class U or I for OSCORE ...
 - ... when should it be fully protected anyway, as if it was of class E?

- Improved general rules
 - Now better covering corner cases and class I options
 - A good sanity check was the Request-Hash option [5]
 - Processed as class I in responses
 - Expected to be elided from responses, but still possible to send it on the wire

- Current rule formulation – Section 3.1
 - Three general cases, all phrased as “Any CoAP option such that ...”.
 - The rationale is to encrypt as many options as possible. If there is a match, encrypt!
 - Multiple examples are provided for each case

Recent updates (already in v -06)

› New Section 5 – Guidelines on establishing OSCORE Security Contexts
 – Generally agnostic of the used establishment method

› For OSCORE
 – Guidelines for the client using EDHOC [6], first with the proxy, then with the origin server
 – Reference to the possible to use, optimized EDHOC workflow [7]

› For Group OSCORE
 – Expected between origin client and servers, which rely on the Group Manager

Updates in version -07

Section 2.5: mentioned two additional use cases
- CoAP performance measurements involving on-path probes – draft-ietf-core-coap-pm
- EST over OSCORE through a CoAP-to-HTTP proxy – draft-ietf-ace-coap-est-oscore
- Both those documents include an informative reference to this document

Section 5: clarifications when Group OSCORE is used – Thanks Christian!
- New text: no need for a proxy to be in the same OSCORE group of the origin client and server
- Not forbidden altogether anymore, as it was in version -06; it might be fine and desirable

Section 7: added first security considerations
- Inherited from OSCORE, Group OSCORE, and the specifically used CoAP options
- Any OSCORE endpoint in the chain enjoys the same, usual (Group) OSCORE properties
Updates in version -07

- Added new Section 6, on using SCHC (RFC 8724)
 - The compression of CoAP headers with SCHC is already defined in RFC 8824
 - When OSCORE is used, an inner and outer compression are performed on a message
 - *draft-tiloca-schc-8824-update* spells out (but does not extend) how this works with proxies
 - The inner compression is end-to-end; the outer compression is hop-by-hop

- Section 6 generalizes the above for nested OSCORE protections
 - No changes to the core mechanics of SCHC

- When a sender endpoint produces an outgoing message, it performs:
 - One inner compression for each applied OSCORE layer
 - Each for the OSCORE endpoint intended to decrypt and strip that OSCORE layer
 - Exactly one outer compression, after all the inner compressions
 - Intended for the (next-hop towards the) recipient origin endpoint
Updates in version -07

› Appendix A: improved notation in the 5 examples of message exchange
 – Easier to see what is encrypted, and which OSCORE Security Context is used
 – Easier to follow the sub-steps taken by each endpoint
 – Two examples consider EDHOC [6], one of which with the optimized workflow [7]

› Removed old Appendix B
 – It included early specification notes towards “OSCORE-protected onion forwarding”
 – Discussed and agreed to remove it during the CoRE interim meeting on 2023-06-07
 – The removed and already revised content is now an Experimental document in T2TRG [8]

› Added new Appendix B
 – State diagram in ASCII art, showing the message processing of incoming requests
 – Based on the earlier slide 6, plus additional error handling; consistent with Section 3.3

Summary

› Proposed update to RFC 8613
 – Define the use of OSCORE in a communication leg including a proxy
 – Explicitly admit nested OSCORE protection: “OSCORE-in-OSCORE” / “Matryoscore”
 – Seamlessly usable also with Group OSCORE

› Stable approach and mechanics
 – Signaling-free message processing; CoAP options are protected as much as possible

› Additional material
 – On establishing of an OSCORE Security Context with proxies
 – On compressing CoAP headers with SCHC (RFC 8824)
 – Examples of message exchanges, also considering key establishment with EDHOC

› The authors believe that version -07 is ready for a WG Adoption Call
Thank you!

Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-core-oscore-to-proxies
Backup
Use cases

1. CoAP Group Communication with Proxies
 - draft-ti-loca-core-groupcomm-proxy
 - CoAP group communication through a proxy
 - P must identify C through a security association

2. CoAP Observe Notifications over Multicast
 - draft-ietf-core-observe-multicast-notifications
 - If Group OSCORE is used for end-to-end security …
 - … C provides P with a Ticket Request obtained from S
 - That provisioning should be protected over C ↔ P
3. LwM2M Client and external Application Server
 - From the *L2wM2M Transport Binding* specification:
 › OSCORE can be used between a LwM2M endpoint and a non-LwM2M endpoint, via the LwM2M Server
 - The LwM2M Client may use OSCORE to interact:
 › With the LwM2M Server (LS), as usual; and
 › With an external Application Server, via LS acting as proxy

4. Use of the LwM2M Gateway (from David Navarro)
 - It provides the LwM2M Server with access to:
 a) Resources at the LwM2M Gateway
 b) Resources at external End Devices, through the LwM2M Gateway, via dedicated URI paths
 - In case (b), the LwM2M Gateway acts, at its core, as a reverse-proxy
Use case 3 – LwM2M

› OMA LwM2M Client and External Application Server

OSCORE MAY also be used between LwM2M endpoint and non-LwM2M endpoint, e.g., between an Application Server and a LwM2M Client via a LwM2M server. Both the LwM2M endpoint and non-LwM2M endpoint MUST implement OSCORE and be provisioned with an OSCORE Security Context.

– The LwM2M Client may register to and communicate with the LwM2M Server using OSCORE
– The LwM2M Client may communicate with an External Application Server, also using OSCORE
– The LwM2M Server would act as CoAP proxy, forwarding traffic outside the LwM2M domain
Processing an incoming request

Incoming Request

Are there proxy-related options?

Yes

Is there the Proxy-Uri Option?

Yes

Am I a forward-proxy?

No

Return 5.05

END

No

No

Am I a reverse-proxy using the indicated resource for proxying?

No

Yes

Consume the proxy-related options and forward

Return 4.01

END

Forward-proxying

Are there the Proxy-Scheme and Uri-Host/Uri-Port Options?

No

No

Yes

Is forwarding this request an authorized operation?

END

Yes

Consume; OR decrypt and repeat

Reverse-proxying

There are Uri-Path Options without Proxy-Scheme

Determine if proxying or not

Proxying

END

Is there an OSCORE Option?

Yes

Is there an application?

Yes

Deliver to the application

END

No

Are there URI-Path Options?

Yes

Decrypt

END

No

OSCORE error handling

END

Success?

No

No

Yes

Return 4.00

END

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes
Encryption of Class U/I Options

I have an outgoing message M, which includes an option OPT.

I have to protect M for another OSCORE endpoint X.

怎么处理OPT？

Did I add OPT to M?

Is OPT intended to be consumed by X?

Have I added OPT after a previous encryption to an endpoint different than X?

Does X need to access OPT before decryption or to perform decryption?

Process OPT as class E

Process OPT as per its original class U or I

This can happen only at a proxy.