Latency Guarantee with Stateless Fair Queuing

draft-joung-detnet-stateless-fair-queuing-00
Jinoo Joung, Jeong-dong Ryoo, Tae-sik Cheung, Yizhou Li, Peng Liu

IETF 117, July 26
Content

• Overview of the draft
• C-SCORE Framework & Operational procedure
• The E2E latency bound of C-SCORE; a closer look
• Implementation considerations
 • Stateful Entrance node
 • Time difference compensation
• Assessment for Requirements
Overview of the Draft

4. Fair Queuing Schedulers
5. Assumptions

6. Work Conserving Stateless Core Fair Queuing (C-SCORE)
 6.1. Framework
 6.2. E2E Latency Bound
 6.3. Operational Procedure
 6.3.1. Metadata
 6.3.2. Network Configuration
 6.3.3. Operational Procedure in Entrance Node
 6.3.4. Operational Procedure in Code Node
 6.3.5. Considerations for Entrance Node
 6.3.6. Time Difference Between Nodes

Renewed, detailed descriptions
Covered in ADN Framework document
New items

Covered in Data-plane open meeting, April.
Work Conserving Stateless Core Fair queuing (C-SCORE)

• Framework
 • FT, Finish time $F(p) = \text{Service order of packet } p$. Smaller FT gets earlier service.
 • At entrance node 0: $F_0(p) = \max\{F_0(p-1), A_0(p)\} + \frac{L(p)}{r}$;
 • At core node h: $F_h(p) = F_{h-1}(p) + d_{h-1}(p)$.
 • Whenever there are packets in the queue, the link never idles.
 • Packets in the queue are served in the ascending order of FT

• If $d_h(p) = \frac{L_{\text{Max}}}{R_h} + \frac{L}{r}$,

• Then the E2E latency of p’s flow is bounded [Kaur] by

$$\frac{B - L}{r} + \sum_{h=0}^{H} \left(\frac{L_{\text{Max}}}{R_h} + \frac{L}{r} \right)$$

This bound is same with a stateful fair queuing network (PGPS, etc.)

- B, L, r are flow specific, which can be controlled according to requirement \(\Rightarrow\) Latency bound can be adjusted if necessary

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_h(p)$</td>
<td>‘Finish time’ of packet p at node h</td>
</tr>
<tr>
<td>$A_0(p)$</td>
<td>Arrival time of p at node 0</td>
</tr>
<tr>
<td>$L(p)$</td>
<td>Length of p</td>
</tr>
<tr>
<td>L</td>
<td>Max Packet Length of p’s flow</td>
</tr>
<tr>
<td>ρ_j</td>
<td>Arrival rate of flow j</td>
</tr>
<tr>
<td>B_j</td>
<td>Max burst of flow j</td>
</tr>
<tr>
<td>r</td>
<td>Service rate of p’s flow</td>
</tr>
<tr>
<td>$r_{h,j}$</td>
<td>Service rate of flow j at node h</td>
</tr>
<tr>
<td>L_{Max}</td>
<td>Max Packet Length at node h</td>
</tr>
<tr>
<td>R_h</td>
<td>Link capacity of h</td>
</tr>
<tr>
<td>$f(h)$</td>
<td>Set of flows in node h</td>
</tr>
</tbody>
</table>
C-SCORE Framework Overview

Entrance Node; keeps flow state $F_0(p-1), L, r$; calculates $F_0(p)$ & $F_1(p)$; marks $F_1(p)$, L, r as packet metadata; serves packets in ascending order of $F_0(p)$.

Core Nodes; stateless. Node h keeps L_{max} & R_h; calculates $F_{h+1}(p)$; updates metadata $F_h(p)$ to $F_{h+1}(p)$; serves packets in ascending order of $F_h(p)$.

- $F_h(p)$: ‘Finish time’ of packet p at node h
- $A_0(p)$: Arrival time of p at node 0
- $L(p)$: Length of p
- L: Max Packet Length of p's flow
- ρ_j: Arrival rate of flow j
- B_j: Max burst of flow j
- r: Service rate of p's flow
- $r_{h,j}$: Service rate of flow j at node h
- L_{max}: Max Packet Length at node h
- R_h: Link capacity of h
- $f(h)$: Set of flows in node h
C-SCORE Operational procedures

1. Network configuration stage
 - A source requests latency bound for flow i, with specifying its ρ_i and B_i
 - If the latency bound can be met, admit the flow
 - Network reserves the links in the path such that
 $$\rho_j \leq \rho_{h,j} \text{ and } \sum_{j \in f(h)} r_{h,j} \leq R_h, \text{ for all } h$$

2. The entrance node or the source
 - Maintains the flow state, i.e. $F_{0}(p-1)$ & r
 - Maintains a clock, for $A_0(p)$
 - Maintains the link info L_{max_0}/R_0
 - Upon receiving or generating packet p,
 - Obtains $F_{1}(p) = \max\{F_{0}(p-1), A_0(p)\} + L(p)/r$. Use it as the FT in 0. Put p in a sorted queue.
 - Obtains $F_{1}(p) = F_{0}(p) + L_{max_0}/R_0 + L/r$.
 - Records $F_{1}(p)$ & L/r in the packet as metadata for the use in the next node 1.
 - Update the flow state to $F_{0}(p)$.

3. A core node h
 - Maintains the link info L_{max}/R_h. (A rather static value)
 - Upon receiving packet p,
 - retrieve metadata $F_{h}(p)$ & L/r, use $F_{h}(p)$ as the FT. Put p in a sorted queue.
 - Obtain $F_{h+1}(p) = F_{h}(p) + L_{max_h}/R_h + L/r$.
 - Update metadata $F_{h}(p)$ with $F_{h+1}(p)$ before or during p is in the queue.
Closer look at E2E latency bound of C-SCORE

- An ideal flow isolation is achieved by a scheduler, which serves the flow as if there is no other flow in an imaginary link whose capacity is equal to the allocated service rate, r, to the flow.

- In this case the latency upper bound D is a function of the flow’s parameters only.

 $D \leq (B-L)/r + L/r$. If $B=L$ then $D \leq L/r$.

- For a network with the ideal flow isolation schedulers: $D \leq (B-L)/r + H*L/r$, where H is the # of hops.

 "Pay burst only once"
Closer look at E2E latency bound of C-SCORE

- FIFO accumulates bursts, and flows are not isolated at all.
- TDMA isolates flows perfectly, but loses efficiency and robustness.
- Fair Queuing isolates flows almost perfectly, with efficiency, robustness & statistical multiplexing gain.
- \(D_{\text{ideal}} \leq (B-L)/r + H*L/r \)
- \(D_{\text{FQ}} = D_{\text{C-SCORE}} \leq (B-L)/r + H*(L/r + L_{\text{max}}/R) \)

This term is due to the non-preemptive nature of the FQ scheduler.

Burst arrivals at input ports

Flow under observation with initial burst and sporadic packets

FIFO scheduler

FQ scheduler

TDMA

Departure from output port

Increased burst
Considerations of Stateful entrance node

- Flow states still have to be maintained in entrance nodes.
- The notion of an entrance node, however, can be mitigated into various edge devices, including a source itself.

FT of a packet is decided based on the maximum of $F_0(p-1)$ and $A_0(p)$; and $L(p)/r$. These parameters are flow specific.

- There is no need to know any other external parameters.
- The arrival time of p to the network, $A_0(p)$, can be approximated by the generation time of p at the source.

Then $F_0(p)$ is determined at the packet generation time and can be recorded in the packet.

Therefore, we can simplify the proposed solution to a great degree, and can apply to any network with robustness and scalability.

\[F_0(p) = \max\{F_0(p-1), A_0(p)\} + \frac{L(p)}{r} \]

\[F_1(p) = F_0(p) + \frac{L_{\text{max}}}{R_0} + \frac{L}{r} \]
Considerations of Time difference between nodes

• In reality, there are time differences between nodes, including the differences due to the propagation delays.

• Note that FT does not need to be precise. It is used just to indicate the packet service order. Therefore, we can assume that the propagation delay is constant and the clocks do not drift.

• $td_{h-1,h}(p)$ can be simplified to a constant value, $td_{h-1,h}$.

• In this case the delay factor should be modified to be

$$d_h(p) = \frac{L_{max}}{R_h} + L/r + td_{h,h+1}.$$

• The E2E latency bound increases as much as the sum of propagation delays from node 0 to h.

• C-SCORE does not need global time synchronization.
Requirements check: \(D_{FQ} \leq (B-L)/r + H*(L/r + L_{max}/R) \)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Support</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Tolerate Time Asynchrony</td>
<td>Yes</td>
<td>Synch is not necessary.</td>
</tr>
<tr>
<td>3.2 Support Large Single-hop Propagation Latency</td>
<td>Yes</td>
<td>Independent of propagation delay</td>
</tr>
<tr>
<td>3.3 Accommodate the Higher Link Speed</td>
<td>Partial</td>
<td>Priority queue can be supported up to 600Gbps Ethernet with 2.5GHz clock ASIC (See Note next page). The throughput is independent of the queue length.</td>
</tr>
<tr>
<td>3.4 Be Scalable to The Large Number of Flows and Tolerate High Utilization</td>
<td>Yes</td>
<td>Independent of # of flows or Utilization level</td>
</tr>
<tr>
<td>3.5 Tolerate Failures of Links or Nodes and Topology Changes</td>
<td>Yes</td>
<td>Requires re-admission control & resource reservation (like all the other candidates)</td>
</tr>
<tr>
<td>3.6 Prevent Flow Fluctuation - Tolerate Dynamic Flows Join/Leave - Burst accumulation</td>
<td>Yes</td>
<td>- Requires admission control & resource reservation (like all the other candidates) - Prevents burst accumulation</td>
</tr>
<tr>
<td>3.7 Be Scalable to a Large Number of Hops with Complex Topology</td>
<td>Yes</td>
<td>Independent of topology, but the E2E latency bound is linear function of hop counts</td>
</tr>
<tr>
<td>3.8 Support Multi-Mechanisms in Single Domain and Multi-Domains</td>
<td>Not applicable</td>
<td>It copes well with other asynchronous solutions, such as TSN ATS, deadline-based forwarding, etc.</td>
</tr>
<tr>
<td>4.1 Support Aggregated Flow Identification</td>
<td>Not applicable</td>
<td>Flow aggregation is not necessary.</td>
</tr>
<tr>
<td>4.2 Support Information used by Functions Ensuring Deterministic Latency</td>
<td>Not applicable</td>
<td>Metadata support is necessary.</td>
</tr>
</tbody>
</table>
Note

- [Bhagwan00] showed that, with a pipelined heap, a priority queue is supported up to 15Gbps, 2^{32} priority levels, for 53 Byte ATM cells, with 0.35 micro technology, ~100MHz clock.

- This is equivalent to one {enqueue & dequeue} operation per TWO clocks.
 - For 250MHz clock, (2 clk / 250M clk per sec) = 8ns is required to enqueue & dequeue
 - For 2.5GHz clock (ASIC), it is 0.8ns.

- For a 64byte (minimum sized) Ethernet packet,
 - 600Gbps line speed means (512bit / 600Gbps) = 0.85ns budget to process a packet
 - 60Gbps \rightarrow 8.5ns

- We can support up to 60Gbps link speed with 250MHz clock
- and 600Gbps link speed with 2.5GHz ASIC
Thank you

• Please take a look at

• Comments and Questions are welcome!

