Democratizing Cellular Access with CellBricks

Zhihong Luo¹, Silvery Fu¹, Mark Theis¹, Shaddi Hasan²,³, Sylvia Ratnasamy¹, Scott Shenker¹,⁴

(1: UC Berkeley, 2: Virginia Tech, 3: Facebook, 4: ICSI)
Growing the tent in cellular

- Today’s cellular ecosystem is dominated by a handful of MNOs
- Our goal: lower the barrier to entry for new entrants
 - Key: ensure small MNOs can compete equally
- This is difficult with today’s architecture!
Today’s cellular architecture

Service disruptions!
Neither of them supports small-scale access providers!

Broad coverage: *pre-established trust*
Seamless mobility: *In-network coordination*
High transaction costs of manually established agreements!
Broad coverage

MVNO

MNO 1
- mgmt
- control
- data
- mobility

MNO 2
- mgmt
- control
- data
- mobility

MNO 3
- mgmt
- control
- data
- mobility

MNO 4
- mgmt
- control
- data
- mobility

UE
Seamless mobility

Today’s architecture can provide small operators with neither broad coverage nor seamless mobility!

Frequently crossing provider boundaries disrupts services!
Start from MVNO: decoupling service providers from access providers
CellBricks

Broad coverage: move user management out of the network
Seamless mobility: move support for mobility out of the network
CellBricks

• **Goal:** Enable on-demand cellular access from any available access providers
 - No pre-established trust
 - No in-network coordination

• **Potential benefits**
 - Lower barrier to entry
 - More efficient use of infrastructure
 - High availability
 - Simpler cellular core

Is CellBricks technically feasible?
CellBricks

Goal: Enable on-demand cellular access from any available access providers

- No pre-established trust
- No in-network coordination

Potential benefits

- Lower barrier to entry
- More efficient use of infrastructure
- High availability
- Simpler cellular core

Yes, technically feasible with minimal overhead!
Yes, technically feasible with minimal overhead!

- **No pre-established trust:**
 - Secure attachment
 - Verifiable accounting

- **No in-network coordination:**
 - Host-driven mobility

- **Prototype performance:**
 - Measure attachment latency
 - **Emulation over Internet:**
 - Measure app. performance
More in the paper …

• Detailed design and evaluation

• Related works

• Adoption-related problems
 • Spectrum? Incentives? Broker being new monopoly?

• Out-of-scope open questions
More in the paper …

• Detailed design and evaluation

• Related works

• Adoption-related problems
 - Spectrum? Incentives? Broker being new monopoly?

• Out-of-scope open questions
Obtaining Spectrum

- CellBricks requires no changes to the RAN
 - Not dependent on spectrum policy changes
 - Can use any spectrum available to them
- Trends in spectrum regulatory environment are favorable
 - Citizens Broadband Radio Service (CBRS)
 - Dynamic spectrum sharing schemes
 - Operate without exclusive spectrum licenses
 - Regulatory constructs that allow operations in licensed but unused cellular spectrum
- License spectrum from existing MNOs (e.g. a franchise model)
Incentives for stakeholders

• New bTelcos:
 • An opportunity to join a growing and profitable market
 • CellBricks makes this opportunity more accessible to new entrants

• Brokers:
 • Business opportunity of participating in cellular market

• Users:
 • Improved coverage, more competitive cellular market

• Incumbent operators
 • Benefit from ownership of spectrum without massive financial investment
 • Incrementally deployable with no change, or cooperation from legacy operators
Won’t brokers be the new monopoly?

- Barrier to entry for starting a broker is low
 - No investments in cellular infrastructure
 - No long-term agreements with bTelcos
 - Requirement: ability to attract users and provide customer support
- It’s easy for users to switch brokers or even sign up with multiple brokers
Beyond CellBricks

- Location privacy [LOCA, NSDI’23]
 - Preserve user’s privacy without compromising network’s capabilities

- Infrastructure efficiency
 - Enable fine-grained multiplexing of cellular infrastructure

- Universal authentication
 - Allow users to efficiently leverage all the available accesses
CellBricks

• A radically different cellular architecture:
 • Lower barrier to entry for new operators
 • Enable a simpler and more efficient cellular infrastructure

• How?
 • Move user management into broker and UE
 • Move mobility support into end hosts

Technically feasible with minimal performance overhead!
Thanks!

- **Webpage**: https://cellbricks.github.io

- **Implementation**: https://github.com/cellbricks

- **Artifacts**: https://cellbricks.github.io/artifact-sigcomm21/

- **Contact**: zhluo@berkeley.edu
Backup slides
Secure Attachment

Session SID1: <User Bob, bTelco 2>

QoS info, security context

"User=Bob; Broker=Google; bTelco=bTelco2"
Traffic reports contain:
1) Session identifier
2) Relative timestamp
3) Usage metrics
4) QoS metrics

User’s device hardware generates traffic reports (trusted and tamper-proof)
Host-driven Mobility

• Today, handovers require coordination between towers
 • Allows a UE’s IP address to stay unchanged

• In CellBricks, handovers may involve different bTelcos
 • Difficult to preserve a UE’s IP address across admin boundaries

• Solution: leverage modern transport protocols (MPTCP, QUIC)
 • L4 connection is maintained even if the UE’s IP address changes

Moving mobility support out of the network and into the transport
MPTCP as an example

- Subflow: TCP segments that operate over an individual path
- How does a single-subflow connection react to IP changes?
 - At the end of detachment:
 - Previous IP address is invalidated by the baseband
 - MPTCP stack is notified of the invalidation
 - Watch for new address until reaching a predefined timeout
 - After the new attachment:
 - New IP address assigned
 - MPTCP uses new source IP to initiate a three-way handshake to create a new subflow, also informs the server to remove the previous subflow
 - Once the new subflow is established, the connection resumes
CellBricks: putting the pieces together
Prototype

- USRPs
 - Provide radio connectivity
- srsLTE
 - UE and eNodeB
- Magma
 - AGW: extended to support secure attachment
 - Orc8r: added a Brokerd service
Measure end-to-end latency of our attachment protocol

UE, eNodeB, AGW in local machines

Vary locations for SubscriberDB (S6a) and brokerd
Emulation over Internet

- Emulation over existing cellular and wide-area networks
 - Performance of real applications under real-world conditions
- Applications
 - iPerf, video streaming, web page loading, VoIP
- Methodology
 - Detect handovers
 - Emulate IP changes (with injected latencies)
 - MPTCP reacts to IP changes
Overall Application Performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>second</td>
<td>millisecond</td>
<td>mbps</td>
<td>1-5/excellent</td>
<td>level (0-5)</td>
</tr>
<tr>
<td></td>
<td>Route / Time of Run</td>
<td></td>
<td>D</td>
<td>N</td>
<td>D</td>
<td>N</td>
</tr>
<tr>
<td>Suburb</td>
<td>D</td>
<td>73.50</td>
<td>65.60</td>
<td>45.95</td>
<td>46.71</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>1.20</td>
<td>16.85</td>
<td>4.35</td>
<td>4.33</td>
<td>1.98</td>
</tr>
<tr>
<td>Downtown</td>
<td>MNO</td>
<td>68.16</td>
<td>50.60</td>
<td>49.60</td>
<td>48.53</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>CellBricks</td>
<td></td>
<td>1.11</td>
<td>15.41</td>
<td>4.25</td>
<td>1.97</td>
</tr>
<tr>
<td>Highway</td>
<td>MNO</td>
<td>44.72</td>
<td>25.50</td>
<td>49.48</td>
<td>48.38</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>CellBricks</td>
<td></td>
<td>1.11</td>
<td>12.42</td>
<td>4.27</td>
<td>1.97</td>
</tr>
<tr>
<td>Overall Perf. Slowdown</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Negligible performance impacts: between -1.6% to 3.1% of the baseline