IKEv2 Link Maximum Atomic Packet and Packet Too Big Notification Extension

draft-liu-ipsecme-ikev2-mtu-dect

Liu, Zhang, Migault
Problem Statement

Fragments reassembling at the egress security gateway requires additional resources which under heavy load results in service degradations.
When Reassembly is observed?

<table>
<thead>
<tr>
<th>Source or Sender</th>
<th>Security Gateway (Ingress node)</th>
<th>Security Gateway (Egress node)</th>
<th>Destination or Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>+---+</td>
<td>+---+</td>
<td>+---+</td>
<td>+---+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>+---+ routers</td>
<td>+---+ routers</td>
<td>+---+ routers</td>
<td>+---+</td>
</tr>
</tbody>
</table>

<--------------------->

N

[...]

2) Mid-tunnel (performed by a router on N)
 (only for IPv4 DF=0 TLP)

 +---+---+---+---+---+--+
 |IPi|IPE|ESP|IPs|IPd|Da| (TLP)
 +---+---+---+---+---+--+
 +---+---+--+
 |IPi|IPE|ta| (TLP)
 +---+---+--+

[...]

4) Outer fragmentation (performed by the Ingress node)
 (IPv4 or IPv6 TLP)

 +---+---+---+---+---+--+
 |IPi|IPE|ESP|IPs|IPd|Da| (TLP)
 +---+---+---+---+---+--+
 +---+---+--+
 |IPi|IPE|ta| (TLP)
 +---+---+--+
In both cases, the Egress nodes:

1. Reassembles fragments for an IPsec packet
 - fragment < LMAP

2. Processes the reassembled IPsec packet
 - (reassembled) IPsec encapsulated TTP < EMTU_R

```
+-------------------+--------------> TTP
|   |encap           |encap       | | |
|   |<--->|             |<--->|       |
| No frag. (1)  |  Fragmentation | Packet To Big |
|               | (2) Mid-tunnel |
|               | (4) Outer     |
+---------------+-------------------+--------> IPsec encapsulated TTP

LMAP                EMTU_R
```
We define two notification payload:

1. Link Maximum Atomic Packet Notification (LMTA)
 • To inform the Ingress node of the observed LMAP

2. Packet Too Big Notification (PTB)
 • to inform the Ingress node of the EMTU, LMTU

Given LMTA, EMTU_R the Ingress node is able to:

1. Compute the TMAP and TMTU
2. Inform the Source of appropriate TTP size (or perform inner fragmentation)
Illustrative Example (LMAP)

<table>
<thead>
<tr>
<th>Source or Security Gateway</th>
<th>Security Gateway or Gateway</th>
<th>Destination or Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sender</td>
<td>(Ingress node)</td>
<td>Receiver</td>
</tr>
<tr>
<td>+--+</td>
<td>+---+</td>
<td>+---+</td>
</tr>
<tr>
<td></td>
<td>+ + + +</td>
<td></td>
</tr>
<tr>
<td>+--+ routers</td>
<td>+---+ routers</td>
<td>+---+</td>
</tr>
</tbody>
</table>

1) Mid-tunnel (performed by a router on N) (only for IPv4 DF=0 TLP)

```
+---+---+---+---+---+--+
|IPi|IPe|ESP|IPs|IPd|Da| (TLP)
+---+---+---+---+---+--+
```

2) Egress node detects fragmentation
 - a) it collects IPVersion the IP version of the first fragment
 as well as FragLen, the fragment length
 - b1) If all segment can be reassembled reassemble and the
 reassembled packet properly decrypted a Link Maximum Atomic Packet Notification (LMAP) is sent.
 is sent on the IKEv2 channel
      ```
      ```

3) Upon receiving the LMAP or optionally the ingress node
 a) Update the TMTU so that the Source performs source fragmentation
 with TTP packet that are not fragmented.
 Source fragmentation
 (IPv6 or IPv4)
      ```
      |IPs|IPd|Da| (TTP)
      +---+---+--+
      +---+---+--+
      |IPs|IPd|ta|
      +---+---+--+
      ```
Where we are:

Remaining discussion:

- ietf-intarea-tunnels considers the router component - carrying the TTP - and the interface component - handling LTP - independent. Such independence between the Tunnel MTU (for TTP) and link layer MTU for (LTP) is provided by performing outer fragmentation when needed.

- RFC4301 considers the router component can adapt to the specific needs of the interface component. This is what we do here.

We follow RFC4301 and we are looking for adoption
Thanks.